Меню Закрыть

Калькулятор точки росы в стене: SmartCalc. Расчет утепления и точки росы для строящих свой дом. СНИП.

Содержание

Расчет точки росы в каркасном доме

Способы утепления пола

Утепление лишь одного пола не решит полностью проблему, а будет, скорее всего, лишь дополнительным мероприятием. Существует два варианта утепления — косметический и капитальный. Рассмотрим более детально оба.

Косметический

Этот вид менее эффективный, но и проще. Для его проведения необходимо:

  • Снять напольное покрытие, постелить на основание вспененный полиэтилен не менее 6 мм толщины или пробковые листы.
  • Установить по периметру наружных стен высокий плинтус.

При правильном устранении проблемы промерзания наружных конструкций может и не понадобится дополнительное утепление пола.

Капитальный

Этот вариант значительно повысит уровень пола:

  • Для его осуществления необходимо уложить утеплитель по основанию или залить цементно-песчаную стяжку.
  • Также можно положить жесткое пеностекло и залить его слоем нивелира.
  • Можно уложить по лагам и дощатый пол, при этом утеплив их. Это — трудоемкий процесс, для которого понадобится силы и время.

Расчет точки росы

Существует несколько способов определения параметра.

По математической формуле

Применяют следующее выражение:

Tp=b((aT/b+T)+InRH)/a-((aT/b+T)+InRH), где

Тр — точка росы, °С;

Расчет точки росы происходит по математическим формулам.

A и b — безразмерные коэффициенты, равные 17,27 и 237,7 соответственно;

RH — относительная влажность воздуха в долях единицы;

Т — температура воздуха, °С;

Ln — натуральный логарифм.

Приведенная формула справедлива для значений Т=0…+60°С и атмосферного давления 762 мм. рт. ст.

Программы-калькуляторы

Специализированные приложения производят вычисления автоматически. Пользователю необходимо ввести исходные данные и нажать кнопку «Старт». Кроме числового результата, программы отображают графики зависимости влажности от степени нагретости воздуха. Такая форма представления информации является более наглядной.

С помощью онлайн-калькулятора

Вычислительные сервисы имеются на многих сайтах. Они избавляют пользователя от необходимости покупать и скачивать программу.

Онлайн-калькулятор есть на многих сайтах.

В специальные поля вводят данные:

  • температуру воздуха;
  • относительную влажность;
  • атмосферное давление.

После нажатия кнопки «Вычислить» на экране отображается искомая величина.

Недостаток данного способа состоит в том, что изготовитель калькулятора в большинстве случаев неизвестен, поэтому результат может быть недостоверным.

Специальные инструменты

Существуют тепловизоры с функцией расчета точки росы. Объекты с такой и более низкой температурой помечаются на экране особым образом.

Гигрометр — измерительный прибор, предназначенный для определения влажности воздуха.

Влажность измеряют с помощью приборов:

  1. Гигрометра. Электронное устройство удобно в пользовании, но вычисления производит с большой погрешностью.
  2. Психрометра. Он состоит из 2 спиртовых термометров. Колбу одного обматывают влажной салфеткой. За счет испарения воды показания на нем будут ниже, чем на «сухом». Чем ниже влажность в помещении, тем активнее улетучивается жидкость. Значит, и разница в показаниях будет больше. Результат отыскивают в справочнике вручную. Определенная с помощью психрометра искомая точка является наиболее точной.

Таблицы

В интернете и специальной литературе публикуются таблицы со значениями точки образования росы для воздуха с разными параметрами.

Пример:

Температура
воздуха, °С
Температура насыщения в °С при влажности воздуха (в %)
30%35%40%45%50%55%60%65%70%75%80%85%90%95%
-10-23,2-21,8-20,4-19-17,8-16,7-15,8-14,9-14,1-13,3-12,6-11,9-10,6-10
-5-18,9-17,2-15,8-14,5-13,3-11,9-10,9-10,2-9,3-8,8-8,1-7,7-6,5-5,8
-14,5-12,8-11,3-9,9-8,7-7,5-6,2-5,3-4,4-3,5-2,8-2-1,3-0,7
+2-12,8-11-9,5-8,1-6,8-5,8-4,7-3,6-2,6-1,7-1-0,2-0,61,3
+4-11,3-9,5-7,9-6,5-4,9-4-3-1,9-10,81,62,43,2
+5-10,5-8,7-7,3-5,7-4,3-3,3-2,2-1,1-0,10,71,62,53,34,1
+6-9,5-7,7-6-4,5-3,3-2,3-1,1-0,10,81,82,73,64,55,3
+7-9-7,2-5,5-4-2,8-1,5-0,50,71,62,53,44,35,26,1
+8-8,2-6,3-4,7-3,3-2,1-0,90,31,32,33,44,55,46,27,1
+9-7,5-5,5-3,9-2,5-1,21,22,43,44,55,56,47,38,2
+10-6,7-5,2-3,2-1,7-0,30,82,23,24,45,56,47,38,29,1
+11-6-4-2,4-0,90,51,834,25,36,37,48,39,210,1
+12-4,9-3,3-1,6-0,11,62,84,15,26,37,58,69,510,411,7
+13-4,3-2,5-0,70,72,23,65,26,47,58,49,510,511,512,3
+14-3,7-1,71,534,55,878,29,310,311,212,113,1
+15-2,9-10,82,445,56,789,210,211,212,213,114,1
+16-2,1-0,11,53,256,37,6910,211,312,213,214,215,1
+17-1,30,62,54,35,97,28,81011,212,213,514,315,216,6
+18-0,51,53,25,36,88,29,61112,213,214,215,316,217,1
+190,32,24,267,79,210,511,71314,215,216,317,218,1
+2013,15,278,710,211,512,81415,216,217,218,119,1
+211,8467,99,511,112,413,51516,217,218,119,120
+222,556,98,810,511,913,514,8161718192021
+233,55,77,89,811,512,914,315,716,918,119,1202122
+244,36,78,810,812,313,815,316,517,81920,121,12223
+255,27,59,711,513,114,716,217,518,82021,122,12324
+2668,510,612,414,215,817,218,519,82122,223,124,125,1
+276,99,511,413,315,216,518,119,520,721,923,124,12526,1
+287,710,212,214,21617,51920,521,722,82425,126,127
+298,711,113,115,116,818,519,921,322,522,825262728
+309,511,813,91617,719,721,322,523,82526,127,128,129
+3211,213,81617,919,721,422,824,325,626,72829,230,231,1
+3412,515,217,219,221,422,824,225,72728,329,431,131,933
+3614,617,119,421,523,22526,32829,330,731,832,83435,1
+3816,318,821,323,425,126,728,329,931,232,333,534,635,736,9
+4017,920,622,62526,928,730,331,73334,335,636,83839

Точка росы при строительстве и утеплении дома

Точка росы — это температура, при которой пар, содержащийся содержится в воздухе, превращается в конденсат в виде росы

Данный параметр важно учитывать при строительстве и утеплении стен

Поэтому важно заранее выяснить, что такое точка росы (ТР) и как ее правильно определить, чтобы выяснить, в каком месте возможно будет собираться много конденсата и принять соответствующие меры

Что такое точка росы для стен?

Воздух в окружающей среде всегда включает в свой состав водяной пар, концентрация которого зависит от многих факторов. Внутри зданий пар выделяют люди и другие живые организмы. Также он поступает во внутренне пространство от различных повседневных процессов – стирки, глажки, уборки, приготовления еды и так далее.

Снаружи процент влаги в атмосфере находится в зависимости от погодных условий. Причем наполнение воздуха парами располагает своим пределом, при достижении которого следует процесс конденсации влаги и зарождения тумана.

Когда не окончательно насыщенная парами воздушная масса (влажность менее 100%) контактирует с поверхностью, чья температура на несколько градусов ниже его собственной, то конденсат образуется даже без тумана.

Дело в том, что воздух при разной температуре может вместить различное количество пара. Чем выше температура, тем больше влаги он может поглотить. Поэтому, когда воздушная смесь с относительной влажностью 80% соприкасается с более прохладным предметом, то она резко охлаждается, предел ее насыщения снижается, а относительная влажность достигает 100%.

Тогда и происходит выпадение конденсата, то есть появляется точка росы. Именно это явление можно наблюдать ранним летним утром на траве.

На заре почва и трава еще холодные, а солнце быстро нагревает воздух, его влажность у земли быстро достигает 100% и выпадает роса.

Процесс конденсации сопрягается с выделением тепловой энергии, которая была потрачена ранее на парообразование. Поэтому роса быстро сходит.

Таким образом, температура точки росы – переменная величина, которая зависит от относительной влажности и температуры воздуха в определенный момент. Чтобы определить точку росы и ее температуру применяют различные измерители — термогигрометры, психрометры и тепловизоры.

Точка росы зависит от относительной влажностью воздуха. Чем она выше, тем ближе ТР к фактической температуре воздуха. Если относительная влажность составляет 100 %, то точка росы совпадает с фактической температурой.

Точка росы в строительстве необходима для того, чтобы понимать, соответствует ли степень утепления стен тому, чтобы не образовывался конденсат.

При значениях точки росы более 20 °С ощущается физический дискомфорт, воздух кажется душным; более 25 °С люди с болезнями сердца или дыхательных путей подвергаются опасности. Но такие значения достигаются очень редко даже в тропических странах.

Как определить точку росы?

На самом деле, чтобы определить точку росы не нужно производить сложные технические расчеты по формулам, измерять относительную влажность воздуха и т.д.

Нет смысла задумываться над тем, как рассчитать точку росы, так как это давно уже сделали специалисты.

А результаты их вычислений занесены в таблицу, где указаны значения температур поверхностей, ниже которых из воздуха с различной влажностью начинает образовываться конденсат.

Фиолетовым цветом обозначена температура по снип в помещении зимой – 20 °С, а зеленым выделен сектор, который указывает диапазон нормированной влажности – от 50 до 60%. При этом ТР колеблется от 9.3 до 12 °С. То есть, при соблюдении всех норм конденсат внутри дома образовываться не будет, так как в помещении нет поверхностей с такой температурой.

По-другому обстоит дело с наружной стеной. Изнутри ее обволакивает воздух, прогретый до +20 °С, а снаружи она подвергает воздействию — 20 °С и более. Соответственно, в толще стены температура медленно растет от -20 °С до + 20 °С и в определенной зоне она обязательно будет равна 12 °С, что при влажности 60% даст конденсацию.

Но для этого еще необходимо, чтобы водяной пар дошел до этой зоны через материал несущей конструкции. Здесь появляется еще один фактор, который влияет на определение точки росы – паропроницаемость материала. Этот параметр всегда нужно учитывать при возведении стен.

Итак, на процесс образования конденсата внутри наружных стен влияют следующие факторы:

  • температура окружающего воздуха;
  • относительная влажность воздуха;
  • температура в толще стены;
  • паропроницаемость материала возведенных стен.

Для измерения данных показателей в толще стены нет никаких анализирующих приборов. Вычислить их можно только расчетным путем.

Теплоизоляционный материал

Для защиты зданий от тепловых потерь, высокой влажности и сдвига точки его утепляют теплоизоляционными материалами. Зимой утеплитель позволяет снизить затраты на отопление, а летом сохраняет прохладу внутри помещения. Каждое изделие имеет свои области применения и свойства. В строительстве используются экологичные и удобные для монтажа материалы. Под определенные условия подбирается изоляция нужного вида.

При правильном утеплении снаружи точка росы будет располагаться внутри утеплителя.

По форме материалы разделяются на:

  • рулонные;
  • листовые;
  • сыпучие;
  • единичные.

По структуре:

  • волокно;
  • ячейки;
  • зернистые.

Сырье бывает органическим, неорганическим и смешанным.

Основные характеристики изоляционных материалов:

  • теплопроводность;
  • влагопоглощение;
  • пористость;
  • влажность;
  • плотность;
  • паропроницаемость;
  • удельная теплоемкость;
  • прочность и др.

Пеноплекс

Пеноплекс еще называют пенополистиролом. В отличие от пенного полистирола материал имеет большую плотность, меньше подвергается механическим повреждениям. Он почти не проводит пар из-за низкого коэффициента паропроницаемости. Однако относится к IV группе горючести (быстро воспламеняется).

Пеноплекс рекомендуется для наружного утепления стен.

Для утепления стен, террас, лоджий, балконов выпускают пеноплекс категории «комфорт». Коэффициент теплопроводности у него в 9 раз меньше, чем у минеральной ваты. Материал требует мало времени на нагрев помещения после охлаждения благодаря низкой теплоемкости. Температурный диапазон эксплуатации составляет -70…+70°C. Пеноплекс этого вида обладает не лучшей звукоизоляцией, имеет самую маленькую плотность и меньший предел прочности по сравнению с другими материалами.

Пласт пенополистирола шириной 2 см сохраняет тепло почти так же, как 40 см минеральной ваты или 37 см кладки кирпича.

Пенопласт

Пенопласт − это материал, отличающийся легкостью и плавучестью. Он устойчив к возгоранию, но под воздействием огня начинает плавиться. Материал прост в обработке, не подвергается заражению грибками и плесенью.

Пенопласт получается из вспененного полимерного сырья: полистирола, полиэтилена, поливинилхлорида или полиуретана. Он состоит из маленьких одинаковых шариков, которые скрепляются между собой. Для изоляции используют жесткий пенопласт, имеющий высокую плотность. Панели легко соединить с помощью каучукового или эпоксидного клея.

Для пенопласта не важен температурный диапазон, но материал подвержен механическим повреждениям.

В качестве теплоизоляции используют плиты толщиной 5 и 10 см. Но, несмотря на структуру, материал звукопроницаемый.

Пенопласт — это один из самых распространённых материалов для теплоизоляции дома.

Минеральная вата

Теплоизоляционный материал состоит из спрессованных волокон. В качестве сырья применяют стекло, базальт и шлак. Исходный материал плавят и вытягивают в волокна. Их длина составляет 2-60 мм. Воздушные поры матов заполняют примерно 95% всего объема. Изделие легко производится и имеет небольшую стоимость.

Благодаря своей пористости вата пропускает воздух и пар, сохраняя воздушный обмен. При этом она не горит и устойчива к влаге, обладает хорошей звукоизоляцией. Но материал имеет 2 недостатка:

  • в составе содержит фенол;
  • отлетающие кусочки ваты, попадая на кожу человека, вызывают зуд.

Вред точки росы для стен дома

   Мы разобрались,
что точка росы может располагаться в трех разных участках стены:

  1. в наружном утеплителе стены
  2. в стене, ближе к наружной части
  3. в стене, ближе внутренней части

     В
каждом из перечисленных мест, точка росы будет проявлять себя по-разному. Если
в одном месте она будет безвредна, то внутри дома или в стене будет оказывать
определенные разрушительные последствия на целостность стены.  Ниже, разберем поведение точки росы в каждом
из перечисленных мест.

Точка росы в


наружном утеплителе

Это самое безвредное для дома нахождение точки росы.
В этом случае:

  • Конденсат при возникновении точки росы образуется, непосредственно, в
    самом утеплителе.
  • Утеплитель не гигроскопичен, потому влага не задерживается в
    конструктиве стены и испаряется при изменении температуры воздуха.
  • За счет пароизоляционных свойств утеплителя, влажность, которая образуется
    при испарении конденсата, выходит на улицу и не взаимодействует со стеной дома.
      
  • Стены дома сухие в течении всего года, как с наружной так и со внутренней
    стороны
  • Стены сохраняют свою прочность и целостность многие десятилетия

утеплитель снаружи

Точка росы в стене дома, ближе к наружной стороне

  • Поведение стены во многом зависит от материала, из которого она выложена. Лучше переносят точку росы, стены из плотных и тяжелых строительных материалов, таких как кирпич, керамзитобетон, камень, дерево. Поскольку они менее подвержены разрушению и имеют больший коэффициент морозостойкости.
  • Стены домов возведенных из пористых материалов, хорошо впитывающих влагу и пропускающих пар. Таких как, пеноблоки, газоблоки и подобного рода материалы, действие точки росы должно быть минимально коротким.

разрушение стены под воздействием влажности

  • При возникновении конденсата внутри стены, материал стены насыщается жидкостью. При последующем понижении температуры воздуха ниже нуля, накопленная жидкость замерзает и увеличивается в объемах. Увеличения объема жидкости разрушает любой стеновой материал изнутри. Это приводит к образованию как мелких, так и крупных трещин в структуре стены. Стены крошатся и окончательно теряют свою прочность.
  • В случае если стена, в которой точка росы внутри и утеплена снаружи, то утеплитель не будет препятствовать выходу накопившей влаги наружу. Поэтому, вся жидкость будет скапливаться на поверхности, между утеплителем и стеной. Это влечет образование плесени и грибка, со всеми вытекающим последствиями, вредными как для здания, так и для здоровья человека.
  • Если стена дома не утеплена снаружи, то жидкость будет выходить с повышением температуры воздуха, но это не убережет стену от внутреннего разрушения после замерзания воды. Подобные испарения жидкости, из влажной стены, мы можем наблюдать в виде налета белого цвета на кирпичных стенах.

выделение влажности из кирпичной стены в виде налета белого цвета

Точка росы в


стене дома, ближе к внутренней поверхности

    Возникает,
когда пар проходит середину толщины стены и конденсат начинает образовываться уже
ближе к поверхности стены, которая находится внутри дома.

Последствия
точки росы для внутренней отделки дома:

  • Насыщенная влажностью кладка начинает выделять на внутренней  стене, в доме  жидкость в виде капель воды.
  • Мокрая поверхность стены разрушает внутреннюю отделку помещения:
    шпаклевку, обои другие отделочные материалы.
  • На стенах и в углах образуется плесень и грибок, от которых уже будет
    очень трудно избавиться
  •  В доме появляется неприятный
    ветхий запах разложения, который вреден для здоровья.
  • Понижается общая температура тепла в доме.

плесень на стене внутри дома

   Самые разрушительные и вредные последствия
для дома это когда точка росы находится ближе к внутренней поверхности стены.

    Точка росы – важный параметр, который следует
учитывать при проектировании и возведении стен, крыш и строительства всего дома.
Ее не соблюдение может привести к необратимым и критическим последствиям для
всего здания.

2 Сферы применения понятия

Переход влаги в жидкое агрегатное состояние существенно меняет условия жизни и трудовой деятельности людей, отражается на работе конструкций и механизмов

Поэтому во многих сферах точке выпадения пара в осадок уделяют особое внимание

2.1 Строительство

Ограждающие конструкции большинства зданий обладают паропроницаемостью. Исключением являются только металлические ангары и гаражи. Относительная влажность в помещении выше, чем снаружи, и пар под действием парциального давления проникает в стены.

Здания обладают паропроницаемостью, которая зависит от типа строительного материала. 

В случае наличия в их толще участков с температурой насыщения или ниже он конденсируется, что приводит к таким последствиям:

  1. Снижению термического сопротивления конструкции.
  2. Сокращению срока службы строительного материала. При похолодании вода превращается в лед и расширяется, вызывая внутренние разрушения.
  3. Развитию колоний плесени и грибка (при увлажнении поверхности).

Строительные материалы имеют разную паропроницаемость. Наименьший показатель у тяжелого железобетона (панельные дома) — 0,03 мг/м*ч*Па, наибольший — у газобетонных блоков — 0,23 (при плотности 400 кг/куб. м).

2.2 Сельское хозяйство

При снижении температуры воздуха влага конденсируется на побегах и листьях растений. При частых повторениях это провоцирует заболевания. Таким образом, знание точки конденсации водяного пара позволяет планировать профилактические и лечебные мероприятия.

Влага конденсируется на листьях растений.

В засушливых регионах, наоборот, конденсация атмосферной влаги может частично заменить систему орошения. Селекционеры работают над выведением сортов, способных усваивать воду таким образом. Тогда знание критической точки поможет определить необходимую производительность поливальных установок, если прогноз погоды в ближайшее время не предвещает дождей.

Меры защиты некоторых растений, например винограда, тоже планируют с учетом данного параметра. Если он высокий, значит, воздух содержит много влаги, и повреждения от заморозков, в т.ч. радиационных, будут умеренными.

Вариации поведения точки росы

Положение плоскости с температурой насыщения зависит от наличия и способа применения утеплителя. Необходимо рассмотреть несколько случаев.

В неутепленных стенах

В этом варианте критическая точка всегда находится внутри конструкции.

Положение зависит от ее толщины и перепада между наружной и внутренней температурами:

  1. Ближе к наружной поверхности. В этом случае стена со стороны помещения всегда сухая. Но наружный слой может постепенно разрушаться по причине замерзания воды. Это зависит от того, какое ее количество достигает участка с температурой превращения пара в росу.
  2. Ближе к внутренней поверхности. При экстремальных похолоданиях стена внутри становится мокрой.
  3. На поверхности со стороны помещения. Внутренняя поверхность конструкции не высыхает всю зиму. На мокрой стене развиваются колонии плесени, отравляющие воздух своими спорами.

В неутепленных стенах точка росы находится внутри конструкции.

Сказанное не относится к каркасному дому, стены которого состоят из утеплителя и паронепроницаемой обшивки.

В утепленных снаружи стенах

В этом варианте критическая точка смещается в сторону улицы.

Она может располагаться:

  1. В утеплителе. Это наилучший вариант. Влага в стене не конденсируется, поэтому конструкция служит весь положенный срок. Условием выноса точки конденсации пара за пределы основного материала является большая толщина теплоизолятора.
  2. В стене. Данное положение наблюдается при недостаточной толщине утеплителя. Зона образования влаги может занимать любое положение (вплоть до внутренней поверхности).

Утеплитель должен превосходить основной материал стены по коэффициенту паропроницаемости. В противном случае влага будет накапливаться на границе между ними. Таким образом, нельзя утеплять пенопластом, коэффициент паропроницаемости которого составляет 0,05 мг/м*ч*Па, стены из кирпича (0,17) и газобетона (0,11-0,23).

В утепленных снаружи стенах критическая точка смещается в сторону улицы.

В утепленных изнутри стенах

Критическая точка смещается в сторону помещения. Возможные варианты:

  1. В стене ближе к внутренней поверхности. Большую часть времени конструкция остается сухой, но в экстремальные холода намокает.
  2. На внутренней поверхности основного материала. Влага не высыхает всю зиму.
  3. В утеплителе. Конструкция всю зиму остается мокрой. В экстремальные холода намокает и теплоизолятор.

К внутреннему утеплению прибегают только в крайнем случае. Например, если наружной стороной стена выходит в шахту лифта. В других ситуациях теплоизолятор размещают извне, иначе срок службы конструкции сильно сокращается.

В утепленных изнутри стенах точка смещается в сторону помещения.

В пластиковых окнах

Металлопластиковые окна представляют собой паронепроницаемые изделия.

Поэтому имеются только 2 варианта температуры поверхности со стороны помещения:

  1. Выше критической величины.
  2. Ниже этого параметра.

Во втором случае окна «потеют».

Возможные последствия

Неправильная укладка теплоизоляции может привести к неприятным последствиям. Материал наносят только на фасад, поскольку дополнительное утепление изнутри считается нецелесообразным по следующим причинам:

  1. Уменьшается жилплощадь.
  2. Замерзает стена, так как тепло от помещения не доходит до перекрытия. В результате этого конденсат проникает внутрь теплоизоляции. Стена находится во влажном состоянии и подвергается коррозии.

Некачественная укладка приводит к разрушению стены. Если поверхность под изоляцию будет неровной и старой, ее придется наносить заново, предварительно сделав ремонт. Если утеплитель снаружи дополнительно не покрыть, то за один сезон он размокнет, придет в негодность и начнет отходить от стен. Тепловой слой обязательно нужно защищать от внешней среды.

Расчет каменной ваты для утепления. Калькулятор расчета утепления стен деревянного дома. Расчетные программы Основит

В последнее время очень остры дискуссии по поводу утепления стен. Одни советуют утеплять, другие считают это экономически неоправданным. Рядовому застройщику, не обладающему особыми познаниями в теплофизике сложно разобраться во всем этом. С одной стороны теплые стены ассоциируются с меньшим расходом на отопление. С другой стороны «цена вопроса» — теплые стены обойдутся дороже застройщику.

Для чего нужен калькулятор теплопроводности стен

В каждом отдельном случае следует считать необходимую толщину теплоизоляционного материала для стен вашего дома и рассчитать, сколько вы сэкономите на отоплении после отопления и через какое время у вас окупятся приобретенные материалы и все работы. Мы подобрали наиболее удобные и понятные сервисы для расчета необходимой толщины теплоизоляционного материала.

Теплотехнический калькулятор. Расчет точки росы в стене

Калькулятор онлайн от smartcalc.ru позволит рассчитать оптимальную толщину утеплителя для стен дома и жилых помещений. Вы сможете рассчитать толщину теплоизоляции и рассчитать точку росы при утеплении дома различными материалами. Калькулятор smartcalc.ru позволяет наглядно увидеть место выпадения конденсата в стене. Это самый удобный теплотехнический калькулятор расчет утепления и точки росы.

Калькулятор толщины утеплителя для стен, потолка, пола

С помощью данного калькулятора вы сможете рассчитать толщину утеплителя для стен, кровли, потолка дома и других строительных конструкций в соответствии с регионом вашего проживания, материала и толщины стен, а также других важных параметров при теплоизоляции. Подбирая разные теплоизоляционные материалы на калькуляторе, вы сможете найти оптимальную толщину утеплителя для стен своего дома.

Калькулятор KNAUF. Расчет толщины теплоизоляции

Данный калькулятор позволяет произвести расчет толщины теплоизоляции стен в основных городах РФ в различных конструкциях на теплотехническом калькуляторе KNAUF, созданном профессионалами из KNAUF Insulation. Все расчеты производятся по требованию СНиП 23-02-2003 «Тепловая защита зданий». Бесплатный онлайн калькулятор расчета теплоизоляции KNAUF, сервис имеет удобный и понятный интерфейс.

Калькулятор Rockwool расчёта толщины теплоизоляции стен

Калькулятор разработан специалистами Rockwool для помощи в расчёте необходимой толщины теплоизоляции и оценке экономической эффективности её установки. Произвести теплотехнический расчет, подобрать подходящую марку теплоизоляции и рассчитать необходимое количество пачек минваты очень просто.

Как убрать точку росы из стены при утеплении

Правильный расчет теплоизоляции повысит комфортность дома и уменьшит затраты на обогрев. При строительстве не обойтись без утеплителя, толщина которого определяется климатическими условиями региона и применяемыми материалами. Для утепления используют пенопласт, пеноплекс, минеральную вату или эковату, а также штукатурку и другие отделочные материалы.

Чтобы рассчитать, какая должна быть у утеплителя толщина, необходимо знать величину минимального термосопротивления . Она зависит от особенностей климата. При ее расчете учитывается продолжительность отопительного периода и разность внутренней и наружной (средней за это же время) температур . Так, для Москвы сопротивление передаче тепла для наружных стен жилого здания должно быть не меньше 3,28, в Сочи достаточно 1,79, а в Якутске требуется 5,28.

Термосопротивление стены определяется как сумма сопротивления всех слоев конструкции, несущих и утепляющих. Поэтому толщина теплоизоляции зависит от материала, из которого выполнена стена . Для кирпичных и бетонных стен требуется больше утеплителя, для деревянных и пеноблочных меньше. Обратите внимание, какой толщины бывает выбранный для несущих конструкций материал, и какая у него теплопроводность. Чем тоньше несущие конструкции, тем больше должна быть толщина утеплителя.

Если требуется утеплитель большой толщины, лучше утеплять дом снаружи. Это обеспечит экономию внутреннего пространства. Кроме того, наружное утепление позволяет избежать накопления влаги внутри помещения.

Теплопроводность

Способность материала пропускать тепло определяется его теплопроводностью. Дерево, кирпич, бетон, пеноблоки по-разному проводят тепло. Повышенная влажность воздуха увеличивает теплопроводность. Обратная к теплопроводности величина называется термосопротивлением. Для его расчета используется величина теплопроводности в сухом состоянии, которая указывается в паспорте используемого материала. Можно также найти ее в таблицах.

Приходится, однако, учитывать, что в углах, местах соединения несущих конструкций и других особенных элементах строения теплопроводность выше, чем на ровной поверхности стен. Могут возникнуть «мостики холода», через которые из дома будет уходить тепло. Стены в этих местах будут потеть. Для предотвращения этого величину термосопротивления в таких местах увеличивают примерно на четверть по сравнению с минимально допустимой.

Пример расчет

Нетрудно произвести с помощью простейшего калькулятора расчет толщины термоизоляции. Для этого вначале рассчитывают сопротивление передаче тепла для несущей конструкции. Толщина конструкции делится на теплопроводность используемого материала. Например, у пенобетона плотностью 300 коэффициент теплопроводности 0,29. При толщине блоков 0,3 метра величина термосопротивления:

Рассчитанное значение вычитается из минимально допустимого. Для условий Москвы утепляющие слои должны иметь сопротивление не меньше чем:

Затем, умножая коэффициент теплопроводности утеплителя на требуемое термосопротивление, получаем необходимую толщину слоя. Например, у минеральной ваты с коэффициентом теплопроводности 0,045 толщина должна быть не меньше чем:

0,045*2,25=0,1 м

Кроме термосопротивления учитывают расположение точки росы. Точкой росы называется место в стене, в котором температура может понизиться настолько, что выпадет конденсат — роса. Если это место оказывается на внутренней поверхности стены, она запотевает и может начаться гнилостный процесс. Чем холоднее на улице, тем ближе к помещению смещается точка росы. Чем теплее и влажнее помещение, тем выше температура в точке росы.

Толщина утеплителя в каркасном доме

В качестве утеплителя для каркасного дома чаще всего выбирают минеральную вату или эковату.

Необходимая толщина определяется по тем же формулам, что и при традиционном строительстве. Дополнительные слои многослойной стены дают примерно 10% от его величины. Толщина стены каркасного дома меньше, чем при традиционной технологии, и точка росы может оказаться ближе к внутренней поверхности. Поэтому излишне экономить на толщине утеплителя не стоит.

Как рассчитать толщину утепления крыши и чердака

Формулы расчета сопротивления для крыш используют те же, но минимальное термосопротивление в этом случае немного выше. Неотапливаемые чердаки укрывают насыпным утеплителем. Ограничений по толщине здесь нет, поэтому рекомендуется увеличивать ее в 1,5 раза относительно расчетной. В мансардных помещениях для утепления крыши используют материалы с низкой теплопроводностью.

Как рассчитать толщину утепления пола

Хотя наибольшие потери тепла происходят через стены и крышу, не менее важно правильно рассчитать утепление пола. Если цоколь и фундамент не утеплены, считается, что температура в подполе равна наружной, и толщина утеплителя рассчитывается также, как для наружных стен. Если же некоторое утепление цоколя сделано, его сопротивление вычитают из величины минимально необходимого термосопротивления для региона строительства.

Расчет толщины пенопласта

Популярность пенопласта определяется дешевизной, низкой теплопроводностью, малым весом и влагостойкостью. Пенопласт почти не пропускает пара, поэтому его нельзя использовать для внутреннего утепления . Он располагается снаружи или в середине стены.

Теплопроводность пенопласта, как и других материалов, зависит от плотности . Например, при плотности 20 кг/м3 коэффициент теплопроводности около 0,035. Поэтому толщина пенопласта 0,05 м обеспечит термосопротивление на уровне 1,5.

Теплотехнический калькулятор точки росы онлайн

С помощью калькулятора теплоизоляции smartcalc.ru вы рассчитаете необходимую толщину утеплителя в соответствии с климатом, материалом и толщиной стен. Калькулятор точки росы онлайн поможет рассчитать толщину теплоизоляционных материалов и увидеть место выпадения конденсата на графике. Это весьма удобный онлайн калькулятор теплопроводности стены для расчета толщины утепления.

Калькулятор расчета толщины утеплителя стены

С помощью калькулятора теплоизоляции Пеноплэкс вы сможете быстро рассчитать толщину утеплителя для стен и других конструкций в соответствии с нормами СНиП, толщиной и материалом стен, используемой пароизоляцией и других важных параметров при утеплении. Подбирая различные строительные материалы, можно выбрать теплый и доступный вариант при строительстве загородного дома.

Калькулятор KNAUF расчета толщины утеплителя

Рассчитайте толщину теплоизоляционного материала в различных строительных конструкциях на калькуляторе KNAUF, разработанным специалистами из KNAUF Insulation. Все расчеты производятся в соответствии со всеми требованиями СНиП 23-02-2003 «Тепловая защита зданий». Счетчик теплоизоляции KNAUF имеет понятный интерфейс и позволит вам подобрать оптимальную толщину утеплителя.

Калькулятор Rockwool для расчета теплоизоляции

Калькулятор утепления Rockwool для расчета теплоизоляции стены и оценке экономической эффективности материала. Вы можете произвести в режиме реального времени теплотехнический расчет. Быстро подобрать наиболее оптимальную марку теплоизоляции Rockwool для вашего дома и рассчитать необходимое количество упаковок плит и рулонов утеплителя для обрабатываемой поверхности.

Калькулятор теплопроводности для расчета толщины стен

Споры по поводу необходимости утепления стен и фасадов домов никогда не затихнут. Одни советуют утеплять фасад, другие уверяют, что это экономически неоправданно. Частному застройщику, не обладающему серьезными познаниями в теплофизике во всем этом сложно разобраться. С одной стороны теплые стены снижают расходом на отопление. Но какова «цена вопроса» – теплые стены обойдутся дороже.

Теплый дом — мечта каждого владельца, для достижения этой цели строятся толстые стены, проводится отопление, устраивается качественная теплоизоляция. Чтобы утепление было рациональным необходимо правильно подобрать материал и грамотно рассчитать его толщину.

Размер слоя изоляции зависит от теплового сопротивления материала. Этот показатель является величиной, обратной теплопроводности. Каждый материал — дерево, металл, кирпич, пенопласт или минвата обладают определенной способностью передавать тепловую энергию. Коэффициент теплопроводности высчитывается в ходе лабораторных испытаний, а для потребителей указывается на упаковке.

Если материал приобретается без маркировки, можно найти сводную таблицу показателей в интернете.

Теплосопротивление материала ® является постоянной величиной, его определяют как отношение разности температур на краях утеплителя к силе проходящего через материал теплового протока. Формула расчета коэффициента: R=d/k, где d — толщина материала, k — теплопроводность. Чем выше полученное значение, тем эффективней теплоизоляция.

Почему важно правильно рассчитать показатели утепления?

Теплоизоляция устанавливается для сокращения потерь энергии через стены, пол и крышу дома. Недостаточная толщина утеплителя приведет к перемещению точки росы внутрь здания. Это означает появление конденсата, сырости и грибка на стенах дома. Избыточный слой теплоизоляции не дает существенного изменения температурных показателей, но требует значительных финансовых затрат, поэтому является нерациональным. При этом нарушается циркуляция воздуха и естественная вентиляция между комнатами дома и атмосферой. Для экономии средств с одновременным обеспечением оптимальных условий проживания требуется точный расчет толщины утеплителя.

Расчет теплоизоляционного слоя: формулы и примеры

Чтобы иметь возможность точно рассчитать величину утепления, необходимо найти коэффициент сопротивления теплопередачи всех материалов стены или другого участка дома. Он зависит от климатических показателей местности, поэтому вычисляется индивидуально по формуле:

ГСОП=(tв-tот)xzот

tв — показатель температуры внутри помещения, обычно составляет 18-22ºC;

tот — значение средней температуры;

zот — длительность отопительного сезона, сутки.

Значения для подсчета можно найти в СНиП 23-01-99.

При вычислении теплового сопротивления конструкции, необходимо сложить показатели каждого слоя: R=R1+R2+R3 и т. д. Исходя из средних показателей для частных и многоэтажных домов определены примерные значения коэффициентов:

  • стены — не менее 3,5;
  • потолок — от 6.

Толщина утеплителя зависит от материала постройки и его величины, чем меньше теплосопротивление стены или кровли, тем больше должен быть слой изоляции.

Пример: стена из силикатного кирпича толщиной в 0,5 м, которая утепляется пенопластом.

Rст.=0,5/0,7=0,71 — тепловое сопротивление стены

R- Rст.=3,5-0,71=2,79 — величина для пенопласта

Для пенопласта теплопроводность k=0,038

d=2,79×0,038=0,10 м — потребуются плиты пенопласта толщиной в 10 см

По такому алгоритму легко подсчитать оптимальную величину теплоизоляции для всех участков дома, кроме пола. При вычислениях, касающихся утеплителя основания, необходимо обратиться к таблице температуры грунта в регионе проживания. Именно из нее берутся данные для вычисления ГСОП, а далее ведется подсчет сопротивления каждого слоя и искомая величина утеплителя.

Популярные способы утепления дома

Выполнить теплоизоляцию здания можно на этапе возведения или после его окончания. Среди популярных методов:

  • Монолитная стена существенной толщины (не менее 40 см) из керамического кирпича или дерева.
  • Возведение ограждающих конструкций путем колодезной кладки — создание полости для утеплителя между двумя частями стены.
  • Монтаж наружной теплоизоляции в виде многослойной конструкции из утеплителя, обрешетки, влагозащитной пленки и декоративной отделки.

По готовым формулам произвести расчет оптимальной толщины утеплителя можно без помощи специалиста. При вычислении следует округлять число в большую сторону, небольшой запас величины слоя теплоизолятора будет полезен при временных падениях температуры ниже среднего показателя.

Калькулятор позволяет определить вид теплоизоляционных материалов для фундамента, посчитать объем необходимых материалов и получить итоговую стоимость, в том числе и крепежа для плит.

Калькулятор расчета и выбора изоляции под сайдинг.

С помощью данного сервиса, Вы сможете определить виды теплоизоляции и гидроизоляции которые подойдут для изоляции стен под сайдинг. Более того калькулятор позволит определить стоимость и рассчитать объем необходимых материалов.

Калькулятор расчета теплоизоляции под вентилируемый фасад

Для того что бы правильно подобрать материалы для утепления вентилируемого фасада, подобрать гидроизоляцию и крепеж, воспользуйтесь этим сервисом. Введя площадь стен, и толщину плит, Вы рассчитаете необходимый объем материалов и узнаете их стоимость.

Онлайн калькулятор расчета стоимости штукатурного фасада.

Сервис позволяет определить виды материалов, стоимость и объем. Исходя из площади фасада и толщины утеплителя, можно рассчитать примерную стоимость штукатурного фасада.

Расчет материалов для изоляции каркасных стен

Если перед Вами стоит задача, изоляции каркасных стен, то этот калькулятор для Вас. Зная площадь стен и толщину утеплителя, вы без труда рассчитаете необходимые материалы.


Онлайн расчет изоляции для пола под стяжку

Для пола, который планируется сделать с использованием цементной, либо любой другой, требуется особые, прочные изоляционные материалы.

Онлайн расчет изоляции для пола по лагам

Что бы правильно подобрать изоляционные материалы для пола, который уложен по деревянным лагам, воспользуйтесь данным калькулятором. Он определит необходимую плотность материалов, их количество и примерную стоимость.

Расчет теплоизоляции для межкомнатных перегородок

Подберите изоляцию для межкомнатных перегородок. Вы сможете расчитать количество и вид изоляции, ее стоимость, а так же, сразу сделать заявку.

Калькулятор для расчета изоляции потолка

Просто введите площадь потолка и толщину теплоизоляции, получите количество материалов и их стоимость.

Определить стоимость материалов для изоляции межэтажных перекрытий

Для решения таких задач, воспользуйтесь онлайн-расчетом цен и количества необходимых материалов.

Онлайн-расчет изоляции чердака

Для утепления чердака, следует подобрать материалы используя данный сервис.

Расчет изоляции для скатной кровли (мансарды)

Изоляция скатной кровли, требует помимо утеплителя, еще пароизоляционную и ветровлагозащитную мембрану, воспользовавшись этим онлайн-калькулятром, вы без труда определити нужные Вам материалы и их ориентировочную стоимость.

Расчет изоляции для плоской кровли

Для расчета материалов для плоской кровли, мы предлагаем воспользоваться этим калькулятром. В расчет включена так же гидроизоляционная мембрана и телескопический крепеж.

Калькулятор расчета водостоков

Калькулятор позволит сделать предварительный расчет необходимых материалов для монтажа водосточной системы. Определить предварительно стоимость/

Калькулятор толщины теплоизоляции. Расчет утелителя онлайн

Калькулятор толщины теплоизоляции. Расчет утелителя онлайн Перейти к содержанию
  • Калькулятор толщины утеплителя для стен, потолка, пола С помощью данного калькулятора вы сможете рассчитать толщину утеплителя для стен дома и других ограждений в соответствии с регионом вашего проживания, материала и толщины стен, используемой пароизоляции, материала для подшивки и других важных параметров при утеплении. Подбирая разные материалы, можно выбрать вариант для себя максимально теплый и дешевый.
  • Теплотехнический калькулятор для расчета точки росы С помощью данного калькулятора вы сможете рассчитать оптимальную толщину утеплителя для дома и жилых помещений в соответствии с регионом проживания, материала и толщины стен. Вы сможете рассчитать толщину различных утеплительных материалов. И увидеть наглядно на графике место выпадения конденсата в стене. Удобный калькулятор теплопроводности стены онлайн для расчета толщины утепления.
  • Калькулятор KNAUF Расчет необходимой толщины теплоизоляции Рассчитайте необходимую толщину теплоизоляционного материала в основных городах РФ в различных конструкциях на теплотехническом калькуляторе KNAUF, созданном профессионалами из KNAUF Insulation. Все расчеты производятся по требованию СНиП 23-02-2003 «Тепловая защита зданий», для всех типов зданий. Бесплатный онлайн сервис расчета теплоизоляции KNAUF, удобный и понятный интерфейс.
  • Калькулятор Rockwool расчёта толщины теплоизоляции стен  Калькулятор разработан специалистами Rockwool для помощи в расчёте необходимой толщины теплоизоляции и оценке экономической эффективности её установки. Произвести теплотехнический расчет, подобрать подходящую марку теплоизоляции и рассчитать необходимое количество пачек очень просто.

что это такое в строительстве, как её найти и правильно рассчитать

При строительстве жилого дома, бани или другого строения любой застройщик должен учитывать такой важный параметр, как точка росы – индикатор концентрации водяного пара в воздухе. Повышение влаги влечет за собой повышение точки, что может стать основной причиной образования конденсата и развития плесени. Для грамотной организации теплоизоляционной защиты строения важно понимать, как правильно рассчитывать данный параметр и где он может располагаться.

Содержание статьи

Что такое точка росы?

Это параметр, который определяет конденсацию влаги из окружающих воздушных масс. В таком случае температурный и влажностный режим в помещениях может превышать температуру нагрева стен, что приводит к неизбежной конденсации влаги на различных поверхностях.

На точку росы оказывают влияние:

  • Уровень влажности и температурный режим внутри здания.
  • Температура нагрева стен и перекрытий.

Если внутри помещений тепло и достаточно влажно, то избыточная влага будет конденсироваться на более холодных основаниях – оконных рамах, стенах и потолочных перекрытиях.

При строительстве дома, окна, двери и стены работают как специальные ограждающие конструкции, защищающие помещения внутри любого здания от неблагоприятного воздействия внешних факторов. Поэтому температура подобных конструкций будет всегда отличаться от температуры воздуха внутри помещений, что может стать основной причиной появления конденсата.

Значение точки росы может изменяться по толщине перекрытия с учетом температурных колебаний снаружи и внутри строения. При поддержании постоянного микроклимата в здании и резком изменении температуры снаружи отмечается сдвиг проблемного участка к внутренней части перекрытия.

При небольшой толщине перекрытия и достаточном его охлаждении конденсат появляется на внутренних поверхностях. Это может привести к деформации облицовки и образованию плесени.

Факторы воздействия на точку росы

На её расположение воздействуют следующие факторы:

  • Климатические условия региона.
  • Временный или постоянный режим эксплуатации помещений.
  • Материалы для возведения и утепления стен.
  • Толщина перекрытий, теплоизоляционный слой.
  • Температура воздуха и уровень влажности в помещениях и за их пределами.
  • Что расположено за утепляемым перекрытием (помещение, улица).
  • Функциональность системы вентиляции.
  • Эффективность работы системы отопления.
  • Теплоизоляция других конструктивных элементов здания.

Важная роль отведена вентиляционной и отопительной системам, которые предназначены для поддержания оптимального микроклимата в помещениях. Таким образом, повышение уровня влажности воздуха неизбежно приводит к увеличению значения точки росы.

Нахождение в стене

Для большего понимания данного процесса рассмотрим несколько вариантов, как может располагаться точка росы в стене.

  1. Здание не утеплено. Если кирпичные, блочные и деревянные стены не имеют дополнительной теплоизоляции, то искомое место будет зависеть от климатических условий. При отсутствии резких изменений температурного режима оно будет расположено у наружной поверхности перекрытия, при этом внутри помещений будет комфортно и тепло. При значительном похолодании проблемный участок будет смещен к внутренней поверхности стены, что приведет к постоянному намоканию поверхностей и появлению конденсата.
  2. Здание утеплено снаружи. Если дом имеет фасадное утепление, тогда расположение конденсационного участка будет зависеть от толщины теплоизоляции. При соблюдении технологии наружного утепления он будет находиться внутри изоляционной прослойки. В противном случае снизить тепловые потери в помещении будет достаточно сложно.
  3. Здание утеплено внутри. При внутреннем утеплении участок будет расположен между утепляющим материалом и серединой перекрытия. Это не самый подходящий вариант, поскольку значительное снижение температуры на улице приведет к образованию конденсата на месте соединения изолятора и стены. Это может стать причиной разрушения утеплителя вплоть до поверхности перекрытия. Внутреннее утепление возможно только при наличии эффективной отопительной системы, которая обеспечит поддержание оптимальной температуры нагрева воздуха во всех помещениях.

Важно! Для стабилизации точки росы в стене в большинстве случаев рекомендуется проводить наружное утепление зданий.

Способы расчёта

Чтобы избежать возможных неприятностей, вызванных повышенной влажностью в помещениях, необходимо правильно рассчитать температурное значение в перекрытиях. Важно понимать, что подобный параметр индивидуален, поэтому расчеты следует проводить для каждого отдельного строения.

Рассчитать точку росы в частном доме или квартире можно следующими способами:

  • По таблице.
  • По формуле.

Расчеты по таблице

Расчет точки росы при теплоизоляции строения осуществляется на основании специальной таблицы, подготовленной по результатам данных научно-проектных организаций.

В ней указаны величины температурных режимов и относительной влажности в помещениях, при которых возможно образование конденсата на поверхностях.

Расчеты с использованием формулы

Для определения значения точки росы используется простая формула:

Tp – значение точки,

а – 17,27,

b – 237,7,

а, b – постоянные значения,

ƛ (T, Rh) – коэффициент, который можно вычислить по формуле:

T – внутренняя температура,

Rh – внутренний уровень влажности,

Ln – натуральный логарифм.

Попробуем определить значение для таких условий: температура воздуха – 23 °C, уровень относительной влажности – 60%.

Для начала необходимо найти коэффициент:

ƛ (T, Rh) = (17,27×23) / (237,7+23) + Ln (60/100) = 1,52362 + (-0,51083) = 1,01279.

Определение параметра:

Tp = (237,7×1,01279) / (17,27×1,01279) = 240,74 / 17,490 = 13,76 °C.

Важно! Чтобы посчитать натуральный логарифм, можно использовать таблицу Брадиса или онлайн-калькулятор логарифмов. Полученное значение всегда будет отрицательным.

В данном случае охлаждение поверхности стены до 13,7 градусов приведет к образованию конденсата.

Необходимые замеры для просчетов

Для получения значения точки необходимо провести основные замеры температурного и влажностного режима внутри помещений. Для этого потребуется следующее оборудование:

  • Гигрометр.
  • Обычный и бесконтактный термометр.

Замеры выполняются по такой схеме:

  1. В помещении, где необходимо определить проблемный участок, отмеряется расстояние от пола в 55 см. На данной высоте замеряется температура воздуха.
  2. На этом же уровне выполняется замер влажности.
  3. В приведенной таблице выбираются полученные значения для определения точки. Для удобства можно составить простой график значений для всех помещений.
  4. Далее определяется целесообразность проведения внутренних ремонтных работ. Для этого при помощи бесконтактного градусника замеряется температура различных поверхностей, например, стен, перегородок, оконных рам.
  5. В завершении проводится сравнение полученных результатов. Если температура поверхности превышает температуру воздуха более чем на 5 градусов, это говорит о повышенной влажности и наличии проблемного участка. В этом случае работы по теплоизоляции требуют грамотного выбора утеплителя и определения подходящей толщины защитного слоя.

Как изменить расположение точки

Если в процессе строительства нового дома были допущены ошибки в расчете, это может привести к постоянному образованию плесени на поверхностях с низкой температурой и дальнейшему разрушению всей конструкции.

Решить проблему в доме, который давно эксплуатируется, можно изменением основных факторов влияния. Для этого предусмотрены следующие мероприятия:

  1. Обустройство надежной системы вентиляции. Если готовое строение (гостевой дом, баня или дача) используется временно, например, в летний период, может отмечаться повышение уровня влажности во всех помещениях. Самое правильное решение – организация системы вентиляции для хорошего воздухообмена в любое время года.
  2. Дополнительный обогрев. Если поверхности перекрытий постоянно конденсируют, значит, обогрева помещений недостаточно для снижения уровня влажности. Лучшее решение – дополнительное использование мобильных отопительных приборов или бытовых осушителей воздуха.
  3. Теплоизоляция строения. Сместить точку в сторону улицы можно при помощи фасадного утепления поверхностей. Почему выгодно утеплять стены снаружи? В этом случае место конденсации будет расположено между изолятором и стеной, поэтому даже при существенном изменении климатических условий можно предотвратить увлажнение поверхностей.

При определении местоположения точки в стене необходимо учитывать множество факторов: климатические условия, силу ветра, угол воздействия солнечных лучей, температурные, влажностные режимы внутри помещений, толщину перекрытий и материалы, из которых они изготовлены.

Минимальный уровень влажности характерен для любого типа материала, главное, не допустить его существенного повышения. К тому же самостоятельно определить температурный режим конденсации поверхностей под силу любому домовладельцу. А при соблюдении технологии теплоизоляции можно смело говорить о надежной защите и долговечности стен.

Как рассчитать точку росы и что это такое: tvin270584 — LiveJournal

Большинство из нас наверняка слышали про такое понятие, как точка росы. В этой статье мастер сантехник расскажет что это такое и почему данный физический фактор обязательно следует учитывать при проведении работ по теплоизоляции дома.
Что такое точка росы в строительстве

Точка росы — это значение температуры, при которой водяные пары, находящиеся в воздухе, конденсируют в росу.. Этот показатель зависит от нескольких факторов.

Ключевым является давление воздуха внутри строения и на улице. Далеко не всегда удаётся просто определить этот показатель. Но заметим, что каждый владелец строения должен обязательно определить, какая в помещениях его дома точка росы, поскольку она оказывает влияние на комфорт при проживании.

Если в помещении точка росы завышена, в этом случае основные строительные материалы – бетон, металл и дерево – не обеспечат нужного эффекта при возведении дома, и срок их службы будет непродолжительным. Здесь понадобится либо высокий цоколь, либо дополнительная защита от влаги.

Если во внутренних помещениях строения выполняется настил полов из полимерных материалов, то попадание в структуру материала конденсата во время эксплуатации напольного покрытия может привести к возникновению таких дефектов:


  • Вздутие;

  • Отслоение;

  • Шагрень.

Чисто визуальным способом невозможно определить этот показатель в помещении. Для этого необходимо использовать специальный прибор под названием бесконтактный термометр. Кроме него следует пользоваться таблицей, в которой в специальной главе описано, как определить этот параметр в стенах сооружения и произвести его правильный расчет.

Под этим термином следует понимать показатель, который определяет уровень влажности в воздухе. То есть, можно говорить о том, что чем выше уровень влажности в помещении, тем выше точка росы. Однако при определении этого показателя необходимо принимать во внимание еще два важных критерия:


  • Изменяемые показатели давления;

  • Температура наружного воздуха.

О том, что измеряется показатель точки росы в градусах, знают далеко не все. В итоге получается, что точка росы — температура воздуха определенной величины, при которой он сам насыщается влажными парами. Однако необходимо принимать во внимание тот факт, что сама точка не может быть выше температуры воздуха.

Необходимо вспомнить, как возникает конденсат: он образуется при соприкосновении теплого воздуха с холодной поверхностью. Чтобы всем было понятно, как этот показатель работает в реальных условиях, будет правильным рассмотреть возникновение такого явления, как туман. Для его появления необходимо, чтобы температура наружного воздуха и температура точки росы совпадали между собой. Говоря другими словами, принимая во внимание эти показатели, можно точно определить уровень влажности на улице и в помещении.

Какие факторы оказывают влияние на точку росы

На такой показатель, как точка росы влияние оказывают несколько факторов:


  • Один из главных — толщина стен помещения. Другой не менее важный — какие материалы применяются во время теплоизоляции стен строения. Также значимым является и температура. Она может различаться в зависимости от территории расположения строения. Температурный коэффициент на северных территориях будет отличаться от регионов, расположенных на юге;

  • Еще один важный фактор — это влажность. Если в воздушном пространстве содержится влага, то чем её больше, тем более высоким будет показатель точки росы.

Чтобы было точное представление о том, что такое точка росы и какое влияние на неё могут оказать различные факторы, рассмотрим этот фактор на примерах:


  • Неутепленная стена в помещении. В этом случае точка росы будет передвигаться. Происходить это будет под влиянием погодных условий вне помещения. Если погода на улице стабильная и нет резких колебаний температуры, то точка росы будет располагаться максимально близко к наружной стене. В этом случае негативного влияния на само помещение оказываться не будет. В том случае, если наступит резкое похолодание, то произойдет постепенное перемещение точки росы во внутреннюю часть стены. А это может привести к тому, что помещение будет насыщено конденсатом, вследствие чего произойдет медленное намокание поверхностей стен.

  • Стена, имеющая утепление снаружи. Точка росы здесь будет располагаться внутри стены в теплоизоляционном слое. Выбирая материал для утепления конструкций, необходимо обращать внимание на этот фактор и правильно подходить к расчету толщины теплоизоляционного материала.

  • Стена, утепленная изнутри. Здесь точка росы располагается между утеплителем и центром стены. Такой вариант не самый лучший, ведь если в наружном воздухе преобладает высокий уровень влажности, то при резком похолодании произойдет движение точки росы на стык между утеплителем и стеной. А это может отразиться самым негативным образом на стене. Прибегать к внутреннему утеплению конструкций владелец может лишь тогда, если внутри дома имеется эффективная система обогрева, которая в состоянии обеспечить один и тот же температурный режим в каждой из комнат дома.

В том случае, если при выполнении ремонтных работ в доме погодные условия не принимаются во внимание, то устранить проблему практически невозможно. Единственно правильное решение — убрать все, что было сделано, а потом провести все работы повторно, но уже правильно с учетом точки росы. Однако это приведёт к большим затратам для владельцев строения.

Определение точки росы в стене

Основные показатели, необходимые для расчета, это влажность и температура внутри помещения. Для их определения используется бытовой психрометр.

Данный аппарат определяет оба показателя. Его работа основана на сочетании термометра, охлаждаемого увлажняющим устройством. Чем выше процент влажности, тем выше показатели термометра.

Для строительных нужд разработаны электронные устройства, мгновенно рассчитывающие величины температуры и влажности и выводящие показатели на дисплей. Также функцию расчета точки росы имеют некоторые модели тепловизоров.

Существует несколько способов расчета точки росы:


  • По формуле;

  • По таблице;

  • С помощью онлайн-калькулятора.

Расчет по формуле

Расчет точки росы T с помощью формулы проводится при известных показателях влажности и температуры. Итоговое значение будет считаться приблизительным ввиду пренебрежения некоторыми факторами.

Где нужно предварительно рассчитать f:

t — комнатная температура °С, φ — влажность %, а 17,27 и 237,7 — постоянные величины.

Например, для помещения нормальными показателями является влажность 60% и комнатная температура 21°С, расчет будет выглядеть следующим образом:

Таким образом, расчет точки росы выглядит так:

Температура выпадения конденсата равняется 12.92 oC. Таким образом, утепление стен снаружи предотвратит потери тепла из помещения и промерзание стены.

Расчет по таблице

Точку росы можно определить с помощью созданной специалистами таблицы. Для того, чтобы определить точку росы, например для 21°С при 60% влажности, ищем пересечение строки температуры со столбиком влажности и получаем значение 12.9°С.
Таблица 1. Определения точки росы

Расчет с помощью онлайн-калькулятора

Также вы можете рассчитать значение точки росы, воспользовавшись онлайн-калькулятором на сайтах и форумах строительной тематики. Внеся значения температуры и влажности, снова получаем значение 12,92°С.

Видео

В сюжете — Как работать с онлайн-калькулятором для расчета точки росы в стене

Нормативные документы

Необходимость расчета точки росы регламентируется строительными нормами и правилами. СП 23-101-2004 «Проектирование тепловой защиты зданий», а также СНиП 23-02 «Тепловая защита зданий». Недостаточное утепление смещает точку росы ближе к помещению.
Таблица 2. Зависимость толщины материала стены от теплопроводности
Так как температура в районе оконных блоков или дверей ниже, чем общая рассчитанная точка росы, то выпадение конденсата в этих сегментах неизбежно в холодное время года. Определение точки росы важно для осуществления решения, с какой стороны проводить утеплительные работы и какой толщины целесообразнее приобрести утеплитель.
Обратите внимание! Чем ниже коэффициент теплопроводности утеплителя, тем меньшей толщины потребуется утепляющий слой. Например, толщины утеплителя из минеральной ваты будет достаточно 0,12 м, когда для сохранения тепла в помещении вам понадобится более 5 метров железобетона

Сведение к минимуму потерь тепла и поддержание комфортного микроклимата являются первоочередными задачами при проектировании и утеплении зданий. Соблюдение строительных правил и норм, а также санитарно-гигиенических нормативов позволит грамотно изготовить инженерную документацию и рассчитать объемы требуемых стройматериалов.


Источник
https://santekhnik-moskva.blogspot.com/2019/10/Kak-opredelit-tochku-rosy.html

Что такое точка росы – калькулятор для вычисления, определяния

При неправильном определении точки росы, материал, из которого состоит несущая и теплоизоляционная конструкция дома, не сможет в полной мере выполнять свои функции. Кроме того, образуются проблемы с отелочными материалами, они начнут опадать, окна – запотевать, на стенах появится грибок и плесень. Чтобы избежать неприятных последствий, во время ремонта или при строительстве дома нужно предварительно определить, где именно находится точка росы. Калькулятор упростит задачу, но владельцу следует разобраться в основных аспектах данного показателя.

Содержание

  1. Что это такое
  2. Что влияет на показатель
  3. Определение местонахождения
  4. Что необходимо для правильного расчета
  5. Формула расчета
  6. Что делать при появлении конденсата

Что это такое

{add_n22}

Точка росы – показатель, определяющий концентрацию влаги в воздухе. Чем больше уровень влажности в доме, тем выше будет значение. Но при расчете точки росы учитывается множество критериев, основными из которых являются:

  • изменяемая степень давления;
  • температурный режим наружного воздуха.

Величина точки измеряется в градусах. Поэтому она считается определенной температурой воздуха, при которой окружающая среда начинает насыщаться испарениями. Здесь нужно принимать во внимание аспект – сама область образования конденсата физически не может превышать показатель температуры воздуха.

Как проступает конденсат при разном утеплении

Вспомните, как образуется конденсат – достаточно контакта нагретого кислорода с охлажденным предметом. Туман возникает при совпадении температурного режима наружного воздуха и точки росы. Если учитывать данные значения можно с точностью вычислить степень концентрации влаги на улице и в доме.

Что влияет на показатель

{add_n23}

На уровень точки росы в помещении имеют прямое влияние несколько основных факторов:

  • толщина стен, материал тепловой защиты здания;
  • температура в регионе;
  • влага – чем больше степень насыщенности в стенах (воздушном зазоре), тем выше коэффициент образования конденсата.

Тепловое сопротивление. График теплового сопротивления и смещение точки росы

Чтобы более точно понимать, как данные факторы влияют на показатель росы, рассмотрим более подробно наглядные примеры:

  1. Стены в доме не имеют внешнего и внутреннего утепления

Положение точки росы будет смещаться исходя из климатических показателей на улице. Если погода стабильная, температурный режим неизменен, показатель располагается ближе к наружной части кладки. В данной ситуации пагубных влияний для самого здания образование конденсата не имеет.

При наступлении заморозков или похолодания, местонахождение сдвинется к внутренней области. Следствием такого исхода считается образование конденсата в помещении и постепенному намоканию кладки.

  1. Имеется ли теплоизоляция снаружи перегородок

В этом случае калькулятор онлайн определит, что точка росы располагается внутри теплоизоляционной прослойки. Это очень важный фактор, который следует в первую очередь учитывать при подборе строительного материала и толщины утеплителя.

  1. Теплоизоляционная защита здания располагается изнутри

Здесь теплотехнический расчет обозначит, что точка росы находится между серединой стены и утеплительным стройматериалом. Если дом располагается в регионе с повышенной влажностью, то такое местонахождение показателя не является положительным. При резком понижении температурного режима область конденсата сместится на стык стены и теплоизоляции, что может негативно отобразиться на несущей конструкции, утеплительной системе.

Поэтому создавать теплоизоляционную защиту внутри дома можно только в случае наличия мощной отопительной системы, которая способна создать одинаковый микроклимат в каждой комнате.

Если ремонт уже завершен, но при этом строитель не пользовался для вычисления точки росы калькулятором Смарткалк или не производил подсчет самостоятельно, устранить проблему без больших затрат будет невозможно. Потребуется убрать весь утеплительный слой и устелить его повторно, но уже учитывая местонахождение параметра конденсата.

ВИДЕО: Утепление стен – убираем точку росы

Определение местонахождения

{add_n24}

Перед тем как выполнять расчет расположения точки росы требуется обозначить следующие нюансы:

  • погодные условия в городе, где находится дом, а также график изменения температуры;
  • толщина внешних перегородок, несущих конструкции здания;
  • стройматериал, из которого состоят сены;
  • интенсивность ветров.

В процессе возведения дома застройщику нужно подробно изучить, может ли в материале, который используется для возведения стен, повыситься показатель влаги. При обнаружении высокой степени конденсата, владельцу недвижимости потребуется переделывать ремонт, поскольку толщина теплоизоляции была подобрана неверно или при его монтаже строитель допустил ошибку.

Что необходимо для правильного расчета

Для расчета точки росы нужно использовать специальные элементы:

  • термометр стандартный и бесконтактный;
  • гигрометр.

Определите температурный режим на уровне 60 см от поверхности пола. Для этого можно положить обычный термометр на ровную поверхность в виде журнального стола или стула. Далее в этой же части помещения требуется вычислить степень влажности, в данном деле потребуется гигрометр. В представленной таблице найдите свои показатели, при помощи которых можно определить параметры.

Теперь зная необходимые значения можно определить, подходит дом для утеплительных работ или нет. Ответ поможет получить бесконтактный градусник, им следует измерить температурный режим на том же уровне – 60 см от пола.

Конечным этапом считается сравнение двух температур. В случае если разница в значениях превышает 4ºС, то в здании имеется повышенная влага и точка росы. Ремонтные работы следует проводить только при правильном определении толщины теплоизоляционного слоя и под контролем опытного строителя.

Формула расчета

{add_n25}

Общими формулами для расчета параметра с учетом теплоизоляционного слоя являются:

Определение символов:

  • h2, 2 – толщина утеплительного слоя и стены;
  • λ1, 2 – показатель проводимости тепла через перегородки и утеплитель;
  • N — коэффициент теплового сопротивления.

(T1-T2)*N=T3

Определение символов:

  • T1, 2 – температурный показатель с внешней и внутренне части стен;
  • Т3 – коэффициент перепада температурного режима в перегородке.

Результат:

Применив значения, которые получились в результате расчета, требуется создать график с диапазоном температурных режимов Т3, расположенным в стене и оставшимися градусами на теплоизоляцию. В необходимой области отметьте показатель.

>>>Онлайн калькулятор расчета точки росы<<<

Что делать при появлении конденсата

В любом доме существует несколько определенных мест, где может образоваться конденсат:

  1. Наружная честь перегородки. В данной области появление данного показателя сводится к минимуму. Как правило, внутренняя часть стены остается сухой.
  2. Между внешней и внутренней частью перегородки. Риск образования конденсата вырастает при резком понижении температурного режима на улице.
  3. Внутри стены дома. Образуется параметр в редких случаях, но даже при подтверждении его появления избавиться от испарений ничего не поможет. Остается смириться с увлажненными перегородками на протяжении всего холодного периода года.

В данных ситуациях частично решить проблему поможет монтаж пароизоляционного слоя. Пленка будет удерживать испарения, которые поступают с улицы.

ВИДЕО: Точка росы или почему выпадает конденсат

Программное обеспечение для расчета коэффициента теплопередачи и прогнозирования конденсации

Это простое в использовании интерактивное программное обеспечение для расчета коэффициента теплопередачи вычисляет потери тепла через конструкция в соответствии с BS EN ISO 6946:1997. Он проверяет наличие поверхностной конденсации или внутритканевой конденсации в течение 12 месяцев, и если это так, на каких интерфейсах. Он также проверяет, высушивает ли ежемесячное испарение конденсат, оставшийся с предыдущих месяцев. Программа теперь рассчитывает массу стен в соответствии с требованиями новой Части E — Сопротивление прохождению звука.Расчеты сплошного и подвесного пола выполнены в соответствии со стандартом BS EN ISO 13370:1998.
  • Расчет U-значения использует «комбинированный метод» для однородных и неоднородных слоев, как требуется действующим законодательством Великобритании. Расчет позволяет поправки на воздушные зазоры в изоляции и сквозные крепления
  • Расчет коэффициента теплопередачи до 14 слоев, включая до 3 слоев с тепловыми мостиками
  • Поверхностная и внутренняя конденсация расчет по BS 5250:2002 и BS EN ISO 13788:2012
  • Легко добавить детали слоя, отредактировать слоя или вставить новый слой
  • Простая коррекция воздушных зазоров и креплений
  • Простота расчета теплые крыши по BS EN ISO 13789
  • Легко вычислить Стены подвала
  • Простота расчета сопротивления воздушного пространства для поверхностей с высокой или низкой излучательной способностью.
  • Легко рассчитать сопротивление под полом для подвесных или сплошных полов согласно BS EN ISO 13370.
  • Выберите наружную температуру и относительную влажность из 24 мест в Великобритании и других местах во Франции, Германии, Голландии и Швеции. Пользователь может добавить больше (в любой стране), если известно.
  • Пользователь может выбрать подходящий метод определения условий внутренней среды для расчета.
  • Включает базу данных часто используемых материалов и позволяет использовать определяемые пользователем материалы
  • Показывает и распечатывает график давления паров на границах раздела для всех месяцев года, показывающий, какие поверхности подвержены риску образования конденсата.
  • Показывает количество конденсата или испарения за каждый месяц года.
  • Печатает подробный отчет о конденсации и завершает расчет коэффициента теплопередачи .

С улучшением уровня изоляции, становится все более и более важным для дизайнеров знать, если их выбранная форма конструкции, скорее всего, иногда возникают проблемы с конденсатом. Дизайнеры не могут позволить себе игнорировать риски связаны с поверхностной или внутритканевой конденсацией.

верх страницы | контакт | дом | Часто задаваемые вопросы | Бесплатные загрузки

Калькулятор точки росы + Таблица точки росы (с формулой)

Точку росы всегда было трудно рассчитать. А именно, точкой росы является температура , при которой влага в воздухе начинает конденсироваться на поверхности (образуя росу). Это классическое преобразование газа в жидкость.

Чтобы упростить расчет точки росы, мы рассмотрим формулу точки росы, простой в использовании калькулятор и таблицу точек росы при различных температурах и уровнях влажности.

Расчетная точка росы всегда зависит от уровня относительной влажности (RH). Чем выше у нас влажность, тем выше будет температура точки росы.

Пример: При температуре 80°F и уровне влажности 60% точка росы составляет 66°F. Это означает, что при температуре выше 66 ° F мы не увидим никакой конденсации (образования росы). При 66°F и ниже (скажем, 60°F, 50°F и т. д.) мы увидим конденсацию воды. Для сравнения, при более высоком уровне влажности 80% точка росы выше (если быть точным, 73°F).

При температуре точки росы мы начинаем наблюдать образование росы. Например, влага из воздуха конденсируется на окне.

Настоящий вопрос таков:

Как рассчитать точку росы при различных температурах и уровнях относительной влажности?

Это довольно просто (но не все так просто). Вы просто используете эту формулу точки росы:

Это уравнение точки росы довольно сложное. Обычно его используем только мы, физики и другие ученые. К счастью, существует очень простая формула, которую каждый может использовать для расчета точки росы.

Чтобы помочь всем, кто хочет определить температуру точки росы, мы подготовили 3 раздела по точкам росы:

  1. Формула точки росы. Чтобы рассчитать точку росы вручную, вам придется использовать формулу температуры точки росы. Вместо использования этой сложной формулы мы можем использовать упрощенную формулу расчета точки росы, представленную Марком Г. Лоуренсом в Бюллетене Американского метеорологического общества в 2005 г. Сначала мы рассмотрим ее.
  2. Калькулятор точки росы. Это калькулятор, автоматически вычисляющий точку росы; вам просто нужно ввести температуру и относительную влажность. Вы можете поиграть с числами, чтобы увидеть, как температура точки росы меняется в зависимости от входных данных.
  3. Точка росы + Точка росы Комфорт Таблица. Если вам нужна точка росы, вы можете просто обратиться к таблице точек росы. Сюда входят температуры точки росы при различных температурах и уровнях относительной влажности. Кроме того, мы также включили «Таблицу комфорта», которая показывает, как люди чувствуют себя при разных температурах точки росы. Пример: При температуре точки росы от 61°F до 65°F мы начинаем «липнуть». Точки росы в диапазоне от 71°F до 75°F обозначаются как «депрессивные».

Давайте сначала посмотрим на формулу, чтобы увидеть, как рассчитывается точка росы. После этого вы можете самостоятельно использовать калькулятор точки росы, а также сверяться с таблицами:

Формула точки росы (упрощенная версия)

Как известно, точка росы рассчитывается исходя из относительной влажности (RH) и температуры воздуха (T). Формула расчета точки росы, как мы видели, достаточно сложна.

Вот почему Марк Г. Лоуренс представил простой способ расчета точки росы в статье 2005 года под названием «Взаимосвязь между относительной влажностью и температурой точки росы во влажном воздухе: простое преобразование и применение», опубликованной в Бюллетене Американского метеорологического Общество.

Это простая формула температуры точки росы, которую может использовать каждый:

RH — это уравнение, обозначающее относительную влажность, T — температура воздуха (выраженная в °C, а не в °F), и мы рассчитываем T роса также в °C.

Это уравнение точки росы адекватно определяет температуру точки росы. При уровне влажности 50% и более отклонение от фактической точки росы (рассчитанной по комплексному уравнению) составляет менее 1 градуса.

Давайте рассмотрим пример использования формулы точки росы. После этого можно воспользоваться калькулятором температуры точки росы, который делает все это автоматически.

Пример: Допустим, мы хотим рассчитать точку росы при 95°F (35°C) и относительной влажности 70%.Вы просто подставляете температуру (в °C) и относительную влажность в уравнение, и вы получаете температуру точки росы (в °C) следующим образом:

T роса = 35°C – ((100 – 70)/5) = 29°C

Конечно, если вы хотите получить точку росы в градусах Фаренгейта, вам придется преобразовать °C в °F. 29°C, например, равно 84,2°F . Это означает, что точка росы при 95°F и относительной влажности 70% составляет 84,2°F.

Примечание: Вы также можете видеть, что при уровне влажности 100% температура точки росы такая же, как и температура воздуха.T = 95°F и T роса = 95°F.

Чтобы избежать всех этих преобразований единиц измерения температуры и упростить весь процесс, вы можете использовать расчет точки росы, который делает все это автоматически:

Калькулятор точки росы (введите температуру и относительную влажность; получите температуру точки росы)

 

Этот калькулятор довольно прост в использовании. Вам просто нужно ввести температуру воздуха (в °F) и относительную влажность, и вы получите температуру точки росы (в °F).Вы можете поэкспериментировать с числами (просто сдвиньте ползунок температуры и/или влажности влево-вправо и посмотрите, как изменится температура точки росы).

Примечание: Если вы хотите, чтобы мы создали аналогичный калькулятор точки росы в градусах Цельсия, просто дайте нам подсказку в комментариях, и мы займем некоторое время, чтобы сделать это.

Например, можно проверить, какова температура точки росы при температуре воздуха 90°F и относительной влажности 75%. Используйте ползунок, и вы должны получить правильный результат:

.

81°F.

Кроме того, вы также можете ознакомиться с приведенной ниже таблицей температуры точки росы (используя этот калькулятор, мы можем создать таблицу калькулятора точки росы). Что действительно интересно посмотреть, так это диаграмму комфорта точки росы; это расскажет вам, как мы себя чувствуем при определенных температурах точки росы.

Таблица точки росы (таблица температуры и относительной влажности)

Таблица точки росы показывает, какова температура точки росы при определенной температуре и определенной относительной влажности.Эта диаграмма также называется «диаграммой температуры точки росы» или «диаграммой влажности точки росы», поскольку она включает как T, так и RH.

Правая/Верхняя: 50% относительной влажности 55% относительной влажности 60% относительной влажности 65% относительной влажности 70% относительной влажности 75% относительной влажности 80% относительной влажности 85% относительной влажности 90% относительной влажности 95% относительной влажности 100 % относительной влажности
0°F -18°F -16°F -14°F -13°F -11°F -9°F -7°F -5°F -4°F -2°F 0°F
10°F -8°F -6°F -4°F -3°F -1°F 1°F 3°F 5°F 6°F 8°F 10°F
20°F 2°F 4°F 6°F 7°F 9°F 11°F 13°F 15°F 16°F 18°F 20°F
30°F 12°F 14°F 16°F 17°F 19°F 21°F 23°F 25°F 26°F 28°F 30°F
40°F 22°F 24°F 26°F 27°F 29°F 31°F 33°F 35°F 36°F 38°F 40°F
50°F 32°F 34°F 36°F 37°F 39°F 41°F 43°F 45°F 46°F 48°F 50°F
60°F 42°F 44°F 46°F 47°F 49°F 51°F 53°F 55°F 56°F 58°F 60°F
70°F 52°F 54°F 56°F 57°F 59°F 61°F 63°F 65°F 66°F 68°F 70°F
80°F 62°F 64°F 66°F 67°F 69°F 71°F 73°F 75°F 76°F 78°F 80°F
90°F 72°F 74°F 76°F 77°F 79°F 81°F 83°F 85°F 86°F 88°F 90°F
100°F 82°F 84°F 86°F 87°F 89°F 91°F 93°F 95°F 96°F 98°F 100°F
110°F 92°F 94°F 96°F 97°F 99°F 101°F 103°F 105°F 106°F 108°F 110°F
120°F 102°F 104°F 106°F 107°F 109°F 111°F 113°F 115°F 116°F 118°F 120°F
130°F 112°F 114°F 116°F 117°F 119°F 121°F 123°F 125°F 126°F 128°F 130°F
140°F 122°F 124°F 126°F 127°F 129°F 131°F 133°F 135°F 136°F 138°F 140°F
150°F 134°F 134°F 136°F 137°F 139°F 141°F 143°F 145°F 146°F 148°F 150°F

Можно просто проверить, какая точка росы при любой Т или Н.

Пример: Какова температура точки росы при 120°F и влажности 90%? Из диаграммы точки росы можно быстро увидеть, что температура точки росы при этих условиях составляет 116°F.

Давайте, наконец, посмотрим, что означают все эти температуры точки росы:

Таблица комфортной точки росы

При какой температуре точки росы мы начинаем чувствовать себя некомфортно?

Диаграмма комфортной точки росы показывает нам, как мы, люди, воспринимаем различные температуры точки росы.А именно, при точке росы 66°F мы начинаем чувствовать себя некомфортно:

Температура точки росы (°F): Уровни комфорта:
55°F и ниже Приятный
от 56°F до 60°F Удобный
от 61°F до 65°F Становится липким
от 66°F до 70°F Неудобно
от 71°F до 75°F Угнетающий
76°F и выше Несчастный

Здесь важно отметить, что температура точки росы учитывает оба параметра:

  • Температура воздуха.
  • Относительная влажность.

Например, точка росы 66°F или выше считается «некомфортной». Обычно это означает температуру воздуха 80 ° F и уровень влажности 60%.

Мы надеемся, что со всеми этими ресурсами вы теперь сможете адекватно определить температуру точки росы. Если у вас есть какие-либо вопросы, вы можете использовать раздел комментариев ниже, и мы постараемся вам помочь.

Спасибо.

FGIA — Инструмент расчета коэффициента сопротивления конденсации

Инструмент CRF предназначен для предоставления общих рекомендаций по предложению минимального фактора сопротивления конденсации (CRF) на основе набора условий окружающей среды для конкретного проекта.

Хотя CRF не является абсолютным значением, он представляет собой числовое значение, полученное в определенных условиях испытаний, позволяющее провести относительное сравнение производительности продукта по конденсации. Это обеспечит сравнительную оценку аналогичных продуктов той же конфигурации и позволит определить условия, при которых может возникнуть неприемлемое количество конденсата.

При сравнении продуктов разного типа или конфигурации могут потребоваться некоторые интерпретационные допущения (например,грамм. секции стены по сравнению с рабочими окнами или по сравнению с неподвижным остеклением). Конденсация в поле может быть результатом многих переменных. Теплопроводность окружающей конструкции здания, внутренняя/внешняя отделка, контроль увлажнения и способ распределения тепла по внутренней плоскости сборки будут влиять на ее общие характеристики. Условия, которые могут влиять на внутреннюю температуру поверхности, включают (но не обязательно ограничиваются) следующее:

  • Тип конструкции стены и используемый в ней материал(ы)
  • полость в стене
  • Закрытые шторы и/или шторы
  • Глубина раскрытия (углубление в табурете, косяках и изголовье)
  • Положительное внешнее давление ветра или отрицательное давление внутри здания, которое может увеличить инфильтрацию холодного воздуха
    • Высота изделия над
    • Расположение окружающих зданий и тип окружающей местности
    • Скорость ветра
  • Солнечная радиация и ориентация
  • Давление и температура водяного пара в помещении
  • Давление и температура водяного пара на открытом воздухе
  • Скорость и количество водяного пара, интерьер
 

Расчеты, используемые для определения рейтинга CRF, основаны на процедурах, изложенных в AAMA 1503-09, Метод добровольных испытаний на теплопередачу и сопротивление конденсации окон, дверей и секций застекленных стен , стандарте FGIA.

Просто введите информацию об окружающей среде, относящуюся к проекту, в каждое из трех полей, требующих ввода пользовательских данных. ) После того, как все данные будут введены, будет рассчитана и показана предлагаемая CRF.
Примеры крупных городов США (при температуре воздуха в помещении 70°F)

Как получить AAMA 1503

Заказ AAMA 1503, Метод добровольных испытаний на теплопередачу и сопротивление конденсации окон, дверей и секций застекленных стен .

Руководство пользователя по выполнению вычислений CRF

Руководство пользователя содержит дополнительную информацию о том, как производятся вычисления CRF.

Консультации — инженер-специалист | Контроль точки росы

Лью Гарриман, Mason-Grant Consulting, Портсмут, Нью-Хэмпшир. 18 ноября 2009 г.

    Просмотреть полную историю, включая все изображения и рисунки, в нашем ежемесячном цифровом издании
    Почему сегодня здания так часто бывают сырыми, неудобными и немного пахнут, скажем так, «земляными»? Причины сложны, хотя решение довольно простое: контроль точки росы.Немного истории важно, чтобы понять, почему этот метод, впервые предложенный Уиллисом Кэрриером в 1902 году, стал такой популярной современной практикой. Контроль точки росы решил некоторые очень сложные современные проблемы простым и надежным способом.

    Идеальный шторм невежества и благих намерений

    Не так давно проектировщикам ОВиК не приходилось особенно беспокоиться о влажности. Имея много дешевой энергии, промышленность могла позволить себе охлаждать воздух мощным охлаждением, чтобы высушить его, а затем поджаривать его с повторным нагревом, чтобы он не заморозил пассажиров.

    Потом мы занялись энергией и начали измерять (и регулировать) КПД. Но мы настолько привыкли к контролю влажности вместе с нашим охлаждением, что ни регуляторы, ни дизайнеры не заметили, что в погоне за разумной эффективностью охлаждения мы отказались от скрытой эффективности. Измерение эффективности и результативности осушения никогда не требовалось. Так что мы не поняли, особенно в недорогом, высокоэффективном охлаждающем оборудовании постоянного объема, которое мы любим ставить на крыши.

    Затем последовали дебаты по вентиляции 1980-х годов, которые начались с того, что здания лишились наружного воздуха, а закончились их затоплением. Скорость вентиляции утроилась в период с 1981 по 1989 год. Немногие проектировщики осознавали, что нагрузка на осушение также почти утроилась из-за этого вентиляционного воздуха. Итак, в 1990-х годах у нас было охлаждающее оборудование, оптимизированное для разумного охлаждения. Но ему приходилось иметь дело с огромными нагрузками по осушению. Не то чтобы мы знали истинный размер нагрузки по осушению наружного воздуха, даже когда удосужились ее рассчитать.

    Печальный факт. До 1997 года данные климатического проектирования ASHRAE даже отдаленно не описывали пиковую нагрузку осушения. Исторически сложилось так, что проектировщики предполагали, что расчетная пиковая температура охлаждения по сухому термометру и его средняя температура по влажному термометру представляют собой пиковые нагрузки как для охлаждения, так и для осушения.

    Но на самом деле, как наконец показали новые данные, опубликованные в 1997 году, пиковая точка росы на открытом воздухе приходится на то время, когда температура по сухому термометру умеренная, а не экстремальная. % больше, чем нагрузка на осушение, когда температура наружного воздуха достигает своего пика.

    Вот и все. На рубеже веков у нас было охлаждающее оборудование с ограниченной эффективностью осушения как раз тогда, когда адекватная вентиляция почти утроила нагрузку на осушение, плюс тот факт, что мы, наконец, осознали — благодаря исследованиям ASHRAE — что наши оценки пиковой нагрузки осушения для наружного воздуха всегда были примерно на 30% ниже реальной правды.

    Что делать? Что ж, когда ваш любимый инструмент — молоток (высокоэффективная система охлаждения), то все ваши проблемы выглядят как гвозди (нужна система охлаждения побольше).Обычная склонность к тому, что чем больше, тем лучше, привела к тому, что большинство проектировщиков HVAC увеличили размеры системы охлаждения, чтобы контролировать влажность.

    Но увеличение мощности охлаждающего оборудования имеет прямо противоположный эффект. Когда система охлаждения слишком велика для разумной охлаждающей нагрузки, она очень быстро охлаждает помещение. Он остывает так быстро, что его незначительный эффект осушения происходит в течение такого короткого времени, что чистое осушение в течение тысяч часов непиковой нагрузки почти равно нулю.5

    Осушение прекращается, когда прекращается охлаждение.И охлаждение часто останавливается, потому что этот большой и эффективный блок очень быстро охлаждает пространство. С другой стороны, вентиляция (с ее огромной нагрузкой на осушение) не останавливается. Поэтому влажность вентиляционного воздуха накапливается в помещении и приводит к проблемам.

    Этот идеальный шторм из добрых намерений и невежества помогает объяснить, почему так много гостиничных номеров так сыро, и почему так много зданий переохлаждены и неудобны, когда они должным образом проветриваются.

    Проблема плесени также усугубляется, когда здания переохлаждаются, но это уже другая длинная и сложная история.А пока достаточно повторить очевидное. Ни клиенты, ни юристы не впечатлены нашими добрыми намерениями, когда эти красивые, большие, негабаритные охлаждающие устройства приводят к образованию плесени. Но хватит истории и проблем. Давайте поговорим о решениях.

    Контроль точки росы

    Точка росы – это температура, при которой влага в воздухе начинает конденсироваться. Это абсолютное измерение количества водяного пара в воздухе, в отличие от относительной влажности или температуры смоченного термометра.Для влажности эти показатели являются относительными. Сами по себе они не указывают на абсолютное количество влаги в воздухе. Точка росы да.

    Если вы хотите предотвратить проблемы с влажностью и влажностью, очень полезно учитывать точку росы.

    Например, если точка росы на открытом воздухе выше точки росы в помещении, необходимо удалить водяной пар из вентиляционного воздуха. А если точка росы наружного воздуха ниже целевой в помещении, вам придется добавлять водяной пар в вентиляционный воздух.Легко.

    Другой пример: летом, если система охлаждения охлаждает воздуховоды, воздухораспределители или близлежащие стены и потолки ниже точки росы в помещении, на этих прохладных поверхностях может образовываться конденсат. В зимнее время, если наружный воздух охлаждает наружные стены ниже точки росы в помещении, вы можете ожидать некоторого конденсата внутри этих холодных стен, потому что влажность внутри помещения мигрирует наружу.

    Кроме того, тепловой комфорт человека определяется разницей между точкой росы в насыщенном воздухе на поверхности кожи и точкой росы в окружающем воздухе.Большая разница означает большую сушку.

    Это хорошо летом, когда нужно отводить тепло, и плохо зимой, когда нужно сохранить тепло тела и не допустить пересыхания глаз. В любом случае, если вы знаете точку росы в помещении, вы много знаете о потенциальном комфорте и дискомфорте в любое время года.

    Для подавляющего большинства зданий почти во всех климатических условиях поддержание точки росы на уровне от 30 до 40 F в отопительный сезон и ниже 55 F в сезон охлаждения обеспечивает разумный компромисс между конкурирующими интересами энергии, комфорта и долговечности здания. .

    Еще одна полезная функция управления по точке росы заключается в том, что это проще, чем управление по относительной влажности. Изменения температуры по сухому термометру в помещении означают, что относительная влажность (rh) широко варьируется по всему зданию, что заставляет систему «охотиться» за достижением контроля в пределах определенного диапазона относительной влажности.

    Напротив, когда сигнал температуры/относительной влажности преобразуется в точку росы и используется в качестве контрольного значения, система не будет колебаться вверх и вниз по мере изменения ощутимых нагрузок в помещении.Абсолютная влажность будет оставаться почти постоянной, поэтому система в целом не будет такой дерганой.

    Как это делается

    Чтобы контролировать влажность, найдите осушающие нагрузки и удалите их как можно ближе к источнику. Таким образом, большие нагрузки не нарушат стабильность влажности в остальной части здания.

    Рисунок 1: Вентиляционный воздух создает наибольшую нагрузку по осушению в большинстве зданий. Источник всех изображений: Руководство по проектированию системы контроля влажности ASHRAE

    .

    Почти во всех коммерческих и административных зданиях наибольшая нагрузка — это избыточная влажность, поступающая в здание с вентиляцией и приточно-вытяжным воздухом, как показано на рис. 1.Устраните эту нагрузку, осушив поступающий воздух, прежде чем он попадет в остальную часть системы. Такой подход обеспечивает очень стабильную влажность в помещении.6

    То же самое касается увлажняемых зданий в зимний период. Самым большим дефицитом влажности будет сухость вентиляционного и подпиточного воздуха. Таким образом, добавление влажности в этом месте снова имеет большое значение для стабилизации влажности во всем здании.

    На рисунках 2 и 3 показано, как это делается. Отдельный блок выполняет предварительную подготовку и дозирование вентиляционного и подпиточного воздуха в здание.Затем другая система обеспечивает отопление и охлаждение, необходимые для компенсации нагрузок, возникающих внутри здания в каждой зоне.

    В последние годы такие установки для осушения вентиляционного воздуха стали называть специализированными системами наружного воздуха или установками DOAS. В дополнение к своей основной функции по удалению избыточной влажности блоки DOAS часто включают функции рекуперации энергии и измерение и контроль переменного объема наружного воздуха. Это снижает годовое потребление энергии и позволяет избежать недостаточной или чрезмерной вентиляции здания.Плохая вентиляция является очень распространенной проблемой в зданиях, когда вентиляция и добавочный воздух подаются через множество отверстий, а не через одну или две специальные системы наружного воздуха.7

    Рис. 2: Глубокая сушка вентиляционного воздуха позволяет контролировать точку росы в помещении.

    Кто это делает и зачем

    В 2002 г. в Руководстве по проектированию ASHRAE для контроля влажности в коммерческих и административных зданиях рекомендуется контроль точки росы вместо контроля относительной влажности для зданий, кроме музеев.Кроме того, чтобы избежать недооценки осушающей нагрузки, в Руководстве по проектированию также рекомендуется, чтобы расчеты вентиляционной нагрузки производились по точке росы на открытом воздухе 0,4%, а не по температуре сухого термометра 0,4%.8 Эта рекомендация теперь более четко закреплена в стандарте ASHRAE 62.1— Вентиляция для обеспечения приемлемого качества воздуха в помещении, а также в информационных главах по климатическому проектированию в изданиях 2001, 2005 и 2009 годов справочника ASHRAE — Основные положения.

    В апреле 2003 года Служба общественных зданий США.S. Администрация общих служб изменила механические требования своих стандартов для помещений P-100, включив в них специальные системы наружного воздуха9. С этой даты новые конструкции должны осушать поступающий вентиляционный воздух — с использованием специальных блоков — до точки росы 50 F вообще. время, когда точка росы наружного воздуха выше этого уровня, даже если в здании мало людей. Учитывая требования к вентиляционному воздуху офисных зданий, такой уровень сухости вентиляционного воздуха будет поддерживать точку росы в здании в целом на уровне 55 F или ниже.

    Рисунок 3: Специальные системы наружного воздуха (DOAS) могут обеспечить более точный контроль как точки росы, так и количества вентиляционного воздуха в каждом помещении.

    В 2008 г. в Руководстве ASHRAE по зданиям в жарком и влажном климате точка росы в помещении 55 F была описана как разумный максимум для зданий с механическим охлаждением, чтобы избежать проблем с плесенью и влажностью без чрезмерных затрат на электроэнергию.10

    В 2009 году Агентство по охране окружающей среды США приняло максимальную точку росы в помещении 55 F в своих новых рекомендациях для проектировщиков, подрядчиков и специалистов по техническому обслуживанию под названием «Контроль влажности в общественных и коммерческих зданиях».11

    Наконец, в конце 2009 г. требования ВВС США по снижению риска образования плесени также включают в себя как специальные блоки для осушения наружной вентиляции, так и максимальную точку росы внутри помещений для зданий с механическим охлаждением.12

    Все эти рекомендации, ориентированные на точку росы, основаны на постоянной заботе о том, чтобы избежать проблем с качеством воздуха в помещении и повреждений от влаги при одновременном сведении к абсолютному минимуму затрат на энергию, связанных с вентиляционным воздухом. Сосредоточение внимания на точке росы в помещении помогает как проектировщикам, так и владельцам зданий сбалансировать и настроить вопросы энергопотребления и комфорта, избегая при этом путаницы, порождаемой традиционным акцентом на относительной влажности.

    Надежный подход

    С учетом точки росы все эти рекомендации по существу возвращаются к подходу, открытому Уиллисом Кэрриером в 1902 году. Будучи молодым инженером, всего 18 месяцев после окончания Корнельского университета, его попросили контролировать влажность для Sackett-Williams Lithographing Co. в Бруклине, Нью-Йорк,

    Компания Carrier быстро решила, что для контроля влажности в помещении необходимо контролировать точку росы поступающего вентиляционного и подпиточного воздуха. Это то, что он сделал для этого проекта, который, по мнению многих, помог ускорить более широкое внедрение технологии механического охлаждения для кондиционирования воздуха в зданиях в Соединенных Штатах.

    Интересно, что в качестве уровня контроля влажности в помещении, выбранного для этого проекта, была точка росы 53 F, что мало чем отличалось от того, к чему спустя столетие вернулись публикации ASHRAE, Федеральной службы общественных зданий и Агентства по охране окружающей среды. Обстоятельства и конкретные проблемы изменились совсем немного за 100 лет. Но, по-видимому, осушение вентиляционного воздуха и поддержание точки росы в помещении ниже 55 F остается хорошей идеей.

    Каталожные номера
    1. Купер, Гейл.Кондиционирование воздуха в Америке: инженеры и контролируемая среда, 1900–1960 гг. 1998: Издательство Университета Джона Хопкинса.

    2. AHRI Стандарт ANSI/ARI 210/240—2003 Унитарное оборудование для кондиционирования воздуха и тепловые насосы с источником воздуха (процедуры испытаний эффективности охлаждения для коммерческого оборудования для кондиционирования воздуха). ANSI.org .

    3. ASHRAE Стандарт 62.1-81,89,07 Вентиляция для приемлемого качества воздуха в помещении . www.ashrae.org.

    4. ASHRAE Справочник — Основы 1997, 2001, 2005, 2009. Глава 14 — Информация о климатическом исполнении . www.ashrae.org.

    5. Шири, Дон Б. III и Хендерсон, Хью. «Осушение при частичной нагрузке». Журнал ASHRAE, апрель 2004 г., стр. 42–47. www.ashrae.org.

    6. Harriman , Брундрет Г. и Киттлер Р. ASHRAE Руководство по проектированию систем контроля влажности для коммерческих и административных зданий.2002 . www.ashrae.org.

    7. Персили , Эндрю; Горфейн, Джош; Бриннер, Грегори. «Проектирование и эффективность вентиляции в офисных зданиях США». Журнал ASHRAE, апрель 2005 г., стр. 30-35. www.ashrae.org

    8. Расчетное значение ASHRAE 0,4% — это точка росы, которая вряд ли будет превышена более чем на 35 часов в течение типичного года (8760 x 0,4% = 35).

    9. У.S. GSA Глава 5 — Машиностроение — Стандарты P100 для обслуживания общественных зданий. 2003 . www.gsa.gov.

    10. Гарриман , Л.Г. и Лстибурек, Дж. Руководство ASHRAE для зданий в жарком и влажном климате (2-е издание). 2009. www.ashrae.org.

    11. Агентство по охране окружающей среды США . Контроль влажности в общественных и коммерческих зданиях: руководство для специалистов по проектированию, строительству и техническому обслуживанию, 2009 г. . www.EPA.gov.

    12. Штаб-квартира ВВС США Агентство поддержки гражданского строительства. Снижение риска образования плесени: 10 основных практических методов, 2009 г. www.afcesa.af.mil .

    Информация об авторе
    Гарриман — директор по исследованиям в Mason-Grant Consulting. Он является заместителем председателя Технического комитета ASHRAE 1.12 — Управление влажностью в зданиях, а в 2003 году он был председателем Специального президентского комитета ASHRAE по плесени внутри помещений.Гарриман был ведущим автором и руководителем проекта руководства ASHRAE по проектированию систем контроля влажности. Отчасти в знак признания этой работы в июле 2009 года он был избран членом Общества.

    Есть ли у вас опыт и знания по темам, упомянутым в этом содержании? Вам следует подумать о том, чтобы внести свой вклад в нашу редакционную команду CFE Media и получить признание, которого вы и ваша компания заслуживаете. Нажмите здесь, чтобы начать этот процесс.

    Программное обеспечение | thewrightconsultancy

    Программное обеспечение, которое мы используем для численного теплового моделирования

    Введение

    Для расчета тепловых потоков и оценки конденсации необходимо использовать мощное программное обеспечение для компьютерного моделирования.

    При работе на самом современном оборудовании они могут точно рассчитать миллионы узлов итерации и представить результаты в виде удобного для чтения отчета. Эти отчеты можно использовать для демонстрации соответствия строительным нормам и проектным параметрам для любого данного проекта.

    Здесь мы показываем типы программного обеспечения, которое мы используем в The Wright Consultancy.

    Программное обеспечение для одномерного моделирования

    Мы используем 1D тепловое моделирование для простой стены или экрана от дождя, когда требуется простое значение U для построения «слоеного пирога».Есть внутри | стена | снаружи без углов или интерфейсов, таких как оконный косяк. Для этой задачи используется BuildDesk-U.

    Ниже приведена выдержка с веб-сайта BuildDesk.

     

    Программное обеспечение

    BuildDesk помогает проектировщикам и специалистам по оценке энергопотребления рассчитать энергоэффективность зданий как в соответствии со строительными нормами, так и в целях сертификации энергоэффективности.

    BuildDesk U

    Программное обеспечение для двумерного моделирования

    Если у вас есть углы, интерфейсы (такие как косяки, подоконники или днища) или требуется значение Psi, тогда требуется 2D-моделирование.Psi-значение — это дополнительная потеря тепла, которая создается из-за взаимодействия элементов, таких как упомянутые выше. Это более сложный расчет и требует использования передового программного обеспечения. Мы используем Bisco от Physibel, который также позволяет проводить анализ риска образования конденсата.

    Ниже приведена выдержка с веб-сайта Physibel, объясняющая использование программного обеспечения.

    • Анализ теплового моста: расчет тепловых потерь, поверхностная конденсация (ISO/FDIS 10211, ISO 13788)

    • Коэффициенты теплопередачи строительных компонентов и элементов (EN ISO 6946)

    • Тепловые характеристики окон, дверей и ставней (EN ISO 10077-2)

    • Теплопередача через грунт (ISO 13370)

    Программное обеспечение для трехмерного моделирования

    Иногда необходимо рассчитать точечные потери тепла, например, через кронштейн или через балкон.Иногда необходимо учитывать сложное соединение стальной рамы с несколькими пересекающимися балками или даже вариантами сопряжения ригеля/стеклопакета. Для этого потребуется 3D-моделирование. Нам также необходимо рассчитать анализ рисков конденсации в 3D, поэтому мы выбираем приложение Trisco от Physibel.

    Моделирование переноса пара

    Иногда необходимо рассчитать линии потока пара, чтобы проанализировать, где происходит просачивание водяного пара. Анализ деталей таким образом может помочь нам понять, где должны быть какие-либо точки слива или дополнительные слои контроля пара.

    Ниже приведена выдержка с веб-сайта HTFlux.

     

    HTflux — это инновационное программное обеспечение для двумерного моделирования переноса тепла и водяного пара. GLASER 2d, уникальный метод, разработанный HTflux, применяет хорошо известный и проверенный метод Глейзера к двумерным геометриям. Это позволяет рассчитать зоны точки росы, включая количество конденсата и испарения, для двухмерных конфигураций.

    %PDF-1.3 % 998 0 объект > эндообъект внешняя ссылка 998 305 0000000016 00000 н 0000009784 00000 н 0000010133 00000 н 0000010179 00000 н 0000010309 00000 н 0000010518 00000 н 0000010601 00000 н 0000010997 00000 н 0000251736 00000 н 0000251806 00000 н 0000251881 00000 н 0000251992 00000 н 0000252117 00000 н 0000252172 00000 н 0000252341 00000 н 0000252391 00000 н 0000252604 00000 н 0000252670 00000 н 0000252927 00000 н 0000256022 00000 н 0000256072 00000 н 0000256188 00000 н 0000256268 00000 н 0000256476 00000 н 0000256542 00000 н 0000256799 00000 н 0000259894 00000 н 0000259944 00000 н 0000260037 00000 н 0000260168 00000 н 0000260365 00000 н 0000260431 00000 н 0000260688 00000 н 0000263783 00000 н 0000263833 00000 н 0000263941 00000 н 0000264036 00000 н 0000264222 00000 н 0000264288 00000 н 0000264545 00000 н 0000267640 00000 н 0000267690 00000 н 0000267774 00000 н 0000267885 00000 н 0000268092 00000 н 0000268158 00000 н 0000268415 00000 н 0000271471 00000 н 0000271521 00000 н 0000271637 00000 н 0000271836 00000 н 0000271902 00000 н 0000272159 00000 н 0000275254 00000 н 0000275304 00000 н 0000275403 00000 н 0000275497 00000 н 0000275682 00000 н 0000275748 00000 н 0000276005 00000 н 0000279100 00000 н 0000279150 00000 н 0000279280 00000 н 0000279401 00000 н 0000279601 00000 н 0000279667 00000 н 0000279924 00000 н 0000283019 00000 н 0000283068 00000 н 0000283170 00000 н 0000283294 00000 н 0000283481 00000 н 0000283547 00000 н 0000283804 00000 н 0000286899 00000 н 0000286948 00000 н 0000287059 00000 н 0000287172 00000 н 0000287319 00000 н 0000287385 00000 н 0000287642 00000 н 00002 00000 н 00002

  1. 00000 н 00002
  2. 00000 н 00002 00000 н 00002 00000 н 0000294347 00000 н 0000294395 00000 н 0000294461 00000 н 0000294718 00000 н 0000297813 00000 н 0000297870 00000 н 0000297989 00000 н 0000298043 00000 н 0000298171 00000 н 0000298225 00000 н 0000298345 00000 н 0000298399 00000 н 0000298524 00000 н 0000298578 00000 н 0000298705 00000 н 0000298759 00000 н 0000298816 00000 н 0000298874 00000 н 0000298993 00000 н 0000299051 00000 н 0000299157 00000 н 0000299215 00000 н 0000299322 00000 н 0000299380 00000 н 0000299489 00000 н 0000299547 00000 н 0000299651 00000 н 0000299709 00000 н 0000299813 00000 н 0000299871 00000 н 0000299980 00000 н 0000300037 00000 н 0000300094 00000 н 0000300152 00000 н 0000300236 00000 н 0000300329 00000 н 0000300467 00000 н 0000300525 00000 н 0000300617 00000 н 0000300700 00000 н 0000300850 00000 н 0000300908 00000 н 0000300995 00000 н 0000301090 00000 н 0000301236 00000 н 0000301294 00000 н 0000301382 00000 н 0000301463 00000 н 0000301610 00000 н 0000301668 00000 н 0000301749 00000 н 0000301838 00000 н 0000301896 00000 н 0000302011 00000 н 0000302069 00000 н 0000302177 00000 н 0000302235 00000 н 0000302293 00000 н 0000302351 00000 н 0000302453 00000 н 0000302511 00000 н 0000302609 00000 н 0000302667 00000 н 0000302725 00000 н 0000302783 00000 н 0000302892 00000 н 0000302950 00000 н 0000303080 00000 н 0000303138 00000 н 0000303196 00000 н 0000303254 00000 н 0000303353 00000 н 0000303411 00000 н 0000303517 00000 н 0000303575 00000 н 0000303633 00000 н 0000303691 00000 н 0000303791 00000 н 0000303849 00000 н 0000303952 00000 н 0000304010 00000 н 0000304068 00000 н 0000304126 00000 н 0000304214 00000 н 0000304312 00000 н 0000304367 00000 н 0000304470 00000 н 0000304525 00000 н 0000304633 00000 н 0000304688 00000 н 0000304743 00000 н 0000304801 00000 н 0000304913 00000 н 0000304971 00000 н 0000305090 00000 н 0000305148 00000 н 0000305263 00000 н 0000305321 00000 н 0000305428 00000 н 0000305486 00000 н 0000305544 00000 н 0000305602 00000 н 0000305700 00000 н 0000305825 00000 н 0000305883 00000 н 0000306019 00000 н 0000306077 00000 н 0000306203 00000 н 0000306261 00000 н 0000306388 00000 н 0000306446 00000 н 0000306573 00000 н 0000306631 00000 н 0000306758 00000 н 0000306816 00000 н 0000306931 00000 н 0000306989 00000 н 0000307047 00000 н 0000307105 00000 н 0000307234 00000 н 0000307292 00000 н 0000307416 00000 н 0000307474 00000 н 0000307608 00000 н 0000307666 00000 н 0000307787 00000 н 0000307845 00000 н 0000308003 00000 н 0000308061 00000 н 0000308177 00000 н 0000308286 00000 н 0000308388 00000 н 0000308443 00000 н 0000308501 00000 н 0000308638 00000 н 0000308696 00000 н 0000308828 00000 н 0000308886 00000 н 0000309025 00000 н 0000309083 00000 н 0000309141 00000 н 0000309196 00000 н 0000309254 00000 н 0000309417 00000 н 0000309475 00000 н 0000309633 00000 н 0000309691 00000 н 0000309853 00000 н 0000309911 00000 н 0000309969 00000 н 0000310027 00000 н 0000310116 00000 н 0000310211 00000 н 0000310356 00000 н 0000310414 00000 н 0000310513 00000 н 0000310625 00000 н 0000310745 00000 н 0000310803 00000 н 0000310861 00000 н 0000310968 00000 н 0000311026 00000 н 0000311140 00000 н 0000311198 00000 н 0000311315 00000 н 0000311373 00000 н 0000311479 00000 н 0000311537 00000 н 0000311656 00000 н 0000311714 00000 н 0000311834 00000 н 0000311892 00000 н 0000312003 00000 н 0000312061 00000 н 0000312171 00000 н 0000312229 00000 н 0000312338 00000 н 0000312396 00000 н 0000312507 00000 н 0000312565 00000 н 0000312669 00000 н 0000312727 00000 н 0000312839 00000 н 0000312897 00000 н 0000313009 00000 н 0000313067 00000 н 0000313181 00000 н 0000313239 00000 н 0000313355 00000 н 0000313413 00000 н 0000313531 00000 н 0000313589 00000 н 0000313707 00000 н 0000313765 00000 н 0000313877 00000 н 0000313935 00000 н 0000313993 00000 н 0000314051 00000 н 0000314184 00000 н 0000314242 00000 н 0000314300 00000 н 0000314355 00000 н 0000314413 00000 н 0000314525 00000 н 0000314583 00000 н 0000314691 00000 н 0000314749 00000 н 0000314852 00000 н 0000314910 00000 н 0000315033 00000 н 0000315091 00000 н 0000315219 00000 н 0000315277 00000 н 0000315399 00000 н 0000315457 00000 н 0000315570 00000 н 0000315628 00000 н 0000315683 00000 н 0000006396 00000 н трейлер ]/предыдущая

    91>> startxref 0 %%EOF 1302 0 объект >поток hY{tL%[email protected] $C6,I +aH E%»0y

    Онлайн-курсы PDH.PDH для профессиональных инженеров. ПДХ Инжиниринг.

    «Мне нравится широта ваших курсов HVAC; не только экологичность или энергосбережение

    курсы.»

     

     

    Рассел Бейли, ЧП

    Нью-Йорк

    «Это укрепило мои текущие знания и научило меня еще нескольким новым вещам

    для раскрытия мне новых источников

    информации.»

     

    Стивен Дедак, ЧП

    Нью-Джерси

    «Материал был очень информативным и организованным. Я многому научился, и они были

    очень быстро отвечают на вопросы.

    Это было на высшем уровне. Буду использовать

    еще раз. Спасибо.»

    Блэр Хейворд, ЧП

    Альберта, Канада

    «Легкий в использовании веб-сайт.Хорошо организовано. Я действительно воспользуюсь вашими услугами снова.

    Я передам вашу компанию

    имя другим на работе.»

     

    Рой Пфлейдерер, ЧП

    Нью-Йорк

    «Справочный материал был превосходным, и курс был очень информативным, тем более что я думал, что уже знаком

    с деталями Канзас

    Авария в городе Хаятт.»

    Майкл Морган, ЧП

    Техас

    «Мне очень нравится ваша бизнес-модель. Мне нравится возможность просмотреть текст перед покупкой. Я нашел класс

    информативный и полезный

    на моей работе.»

    Уильям Сенкевич, Ч.Е.

    Флорида

    «У вас отличный выбор курсов и очень информативные статьи.Вы

    — лучшее, что я нашел.»

     

     

    Рассел Смит, ЧП

    Пенсильвания

    «Я считаю, что такой подход позволяет работающему инженеру легко зарабатывать PDH, предоставляя время для просмотра

    материал.»

     

    Хесус Сьерра, ЧП

    Калифорния

    «Спасибо, что разрешили мне просмотреть неправильные ответы.На самом деле

    человек узнает больше

    от сбоев.»

     

    Джон Скондрас, ЧП

    Пенсильвания

    «Курс был хорошо составлен, и использование тематических исследований является эффективным

    способ обучения.»

     

     

    Джек Лундберг, ЧП

    Висконсин

    «Я очень впечатлен тем, как вы представляете курсы; т.э., что позволяет

    студент для ознакомления с курсом

    материал перед оплатой и

    получение викторины.»

    Арвин Свангер, ЧП

    Вирджиния

    «Спасибо, что предлагаете все эти замечательные курсы. Я, конечно, выучил и

    очень понравилось.»

     

     

    Мехди Рахими, ЧП

    Нью-Йорк

    «Я очень доволен предлагаемыми курсами, качеством материалов и простотой поиска и

    подключение к Интернету

    курсы.»

    Уильям Валериоти, ЧП

    Техас

    «Этот материал в значительной степени оправдал мои ожидания. Курс был легким для понимания. Фотографии в основном давали хорошее представление о

    обсуждаемые темы.»

     

    Майкл Райан, ЧП

    Пенсильвания

    «Именно то, что я искал. Нужен 1 балл по этике, и я нашел его здесь.»

     

     

     

    Джеральд Нотт, ЧП

    Нью-Джерси

    «Это был мой первый онлайн-опыт получения необходимых кредитов PDH. Это был

    информативно, выгодно и экономично.

    Очень рекомендую

    всем инженерам.»

    Джеймс Шурелл, ЧП

    Огайо

    «Я ценю, что вопросы «реального мира» и имеют отношение к моей практике, и

    не основано на какой-то непонятной секции

    законов, которые не применяются

    до «обычная» практика.»

    Марк Каноник, ЧП

    Нью-Йорк

    «Отличный опыт! Я многому научился, чтобы использовать его в своем медицинском устройстве

    организация.»

     

     

    Иван Харлан, ЧП

    Теннесси

    «Материал курса имеет хорошее содержание, не слишком математический, с хорошим акцентом на практическое применение технологии.»

     

     

    Юджин Бойл, П.Е.

    Калифорния

    «Это был очень приятный опыт. Тема была интересной и хорошо представлена,

    а онлайн формат был очень

    доступный и простой

    использование. Большое спасибо.»

    Патрисия Адамс, ЧП

    Канзас

    «Отличный способ добиться соответствия непрерывному обучению PE в рамках временных ограничений лицензиата.»

     

     

    Джозеф Фриссора, ЧП

    Нью-Джерси

    «Должен признаться, я действительно многому научился. Распечатанная викторина помогает во время

    просмотр текстового материала. я

    также оценил просмотр

    предоставлены фактические случаи.»

    Жаклин Брукс, ЧП

    Флорида

    «Документ Общие ошибки ADA в проектировании помещений очень полезен.

    тест действительно требовал исследований в

    документ но ответы были

    всегда в наличии.»

    Гарольд Катлер, ЧП

    Массачусетс

    «Это было эффективное использование моего времени. Спасибо за разнообразие выбора

    в дорожной технике, который мне нужен

    для выполнения требований

    Сертификация PTOE.»

    Джозеф Гилрой, ЧП

    Иллинойс

    «Очень удобный и доступный способ заработать CEU для выполнения моих требований в штате Делавэр.»

     

     

    Ричард Роудс, ЧП

    Мэриленд

    «Узнал много нового о защитном заземлении. До сих пор все курсы, которые я проходил, были отличными.

    Надеюсь увидеть больше 40%

    Курсы со скидкой.»

     

    Кристина Николас, ЧП

    Нью-Йорк

    «Только что сдал экзамен по радиологическим стандартам и с нетерпением жду дополнительных

    курсы. Процесс прост, и

    намного эффективнее, чем

    необходимость путешествовать.»

    Деннис Мейер, ЧП

    Айдахо

    «Услуги, предоставляемые CEDengineering, очень полезны для профессионалов

    Инженеры для получения блоков PDH

    в любое время.Очень удобно.»

     

    Пол Абелла, ЧП

    Аризона

    «Пока все было отлично! Поскольку я постоянно работаю матерью двоих детей, у меня не так много

    пора искать куда

    получи мои кредиты от.»

     

    Кристен Фаррелл, ЧП

    Висконсин

    «Это было очень информативно и поучительно.Простой для понимания с иллюстрациями

    и графики; определенно получается

    проще  впитать все

    теорий.»

    Виктор Окампо, инженер.

    Альберта, Канада

    «Хороший обзор принципов полупроводников. Мне понравилось проходить курс по номеру

    .

    мой собственный темп во время моего утра

    метро

    на работу.»

    Клиффорд Гринблатт, ЧП

    Мэриленд

    «Просто найти интересные курсы, загрузить документы и получить

    викторина. Я бы очень рекомендую

    вам в любой PE нуждающийся

    Единицы CE.»

    Марк Хардкасл, ЧП

    Миссури

    «Очень хороший выбор тем во многих областях техники.»

     

     

     

    Рэндалл Дрейлинг, ЧП

    Миссури

    «Я заново узнал то, что забыл. Я также рад принести пользу в финансовом плане

    от ваш рекламный адрес электронной почты который

    сниженная цена

    на 40%.»

    Конрадо Касем, П.Е.

    Теннесси

    «Отличный курс по разумной цене. Буду пользоваться вашими услугами в будущем.»

     

     

     

    Чарльз Флейшер, ЧП

    Нью-Йорк

    «Это был хороший тест, и я фактически проверил, что я прочитал профессиональную этику

    Коды

    и Нью-Мексико

    правила.»

     

    Брун Гильберт, П.Е.

    Калифорния

    «Мне очень понравились занятия. Они стоили времени и усилий.»

     

     

     

    Дэвид Рейнольдс, ЧП

    Канзас

    «Очень доволен качеством тестовых документов. Буду использовать CEDengineerng

    при необходимости дополнительного

    Сертификация

     

    Томас Каппеллин, П.Е.

    Иллинойс

    «У меня истек срок действия курса, но вы все равно выполнили обязательство и дали

    мне то, за что я заплатил — много

    спасибо!»

     

    Джефф Ханслик, ЧП

    Оклахома

    «CEDengineering предлагает удобные, экономичные и актуальные курсы

    для инженера.»

     

     

    Майк Зайдл, П.Е.

    Небраска

    «Курс был по разумной цене, а материал был кратким и

    хорошо организовано.»

     

     

    Глен Шварц, ЧП

    Нью-Джерси

    «Вопросы соответствовали урокам, а материал урока

    хороший справочный материал

    для дизайна под дерево.»

     

    Брайан Адамс, П.Е.

    Миннесота

    «Отлично, удалось получить полезную информацию с помощью простого телефонного звонка.»

     

     

     

    Роберт Велнер, ЧП

    Нью-Йорк

    «У меня был большой опыт работы над прибрежным строительством — проектирование

    Корпус Курс и

    очень рекомендую.»

     

    Денис Солано, ЧП

    Флорида

    «Очень понятный, хорошо организованный веб-сайт. Материалы курса этики штата Нью-Джерси были очень

    прекрасно приготовлено.»

     

     

    Юджин Брекбилл, ЧП

    Коннектикут

    «Очень хороший опыт. Мне нравится возможность скачивать учебные материалы на

    обзор где угодно и

    когда угодно.»

     

    Тим Чиддикс, ЧП

    Колорадо

    «Отлично! Поддерживайте широкий выбор тем на выбор.»

     

     

     

    Уильям Бараттино, ЧП

    Вирджиния

    «Процесс прямой, никакой чепухи. Хороший опыт.»

     

     

     

    Тайрон Бааш, П.Е.

    Иллинойс

    «Вопросы на экзамене были пробными и демонстрировали понимание

    материала. Тщательный

    и полный.»

     

    Майкл Тобин, ЧП

    Аризона

    «Это мой второй курс, и мне понравилось то, что курс предложил мне, что

    поможет в моей линии

    работы.»

     

    Рики Хефлин, ЧП

    Оклахома

    «Очень быстрая и простая навигация. Я определенно воспользуюсь этим сайтом снова.»

     

     

     

    Анджела Уотсон, ЧП

    Монтана

    «Прост в исполнении. Нет путаницы при подходе к сдаче теста или записи сертификата.»

     

     

     

    Кеннет Пейдж, П.Е.

    Мэриленд

    «Это был отличный источник информации о нагревании воды с помощью солнечной энергии. Информативный

    и отличное освежение.»

     

     

    Луан Мане, ЧП

    Коннетикут

    «Мне нравится подход к подписке и возможности читать материалы в автономном режиме, а затем

    вернись, чтобы пройти тест.»

     

     

    Алекс Млсна, П.Е.

    Индиана

    «Я оценил количество информации, предоставленной для класса. Я знаю

    это вся информация, которую я могу

    использование в реальных жизненных ситуациях.»

     

    Натали Дерингер, ЧП

    Южная Дакота

    «Материалы обзора и образец теста были достаточно подробными, чтобы я мог

    успешно завершено

    курс.»

     

    Ира Бродская, ЧП

    Нью-Джерси

    «Веб-сайт прост в использовании, вы можете скачать материал для изучения, а затем вернуться

    и пройти тест. Очень

    удобный а на моем

    собственное расписание.»

    Майкл Гладд, ЧП

    Грузия

    «Спасибо за хорошие курсы на протяжении многих лет.»

     

     

     

    Деннис Фундзак, ЧП

    Огайо

    «Очень легко зарегистрироваться, получить доступ к курсу, пройти тест и распечатать PDH

    сертификат

    . Спасибо за создание

    процесс простой.»

     

    Фред Шайбе, ЧП

    Висконсин

    «Положительный опыт.Быстро нашел подходящий мне курс и закончил

    PDH за один час в

    один час.»

     

    Стив Торкилдсон, ЧП

    Южная Каролина

    «Мне понравилась возможность загрузки документов для ознакомления с содержанием

    и пригодность до

    имея платить за

    материал

    Ричард Ваймеленберг, ЧП

    Мэриленд

    «Это хорошее пособие по ЭЭ для инженеров, не являющихся электриками.»

     

     

     

    Дуглас Стаффорд, ЧП

    Техас

    «Всегда есть место для улучшения, но я ничего не могу придумать в вашем

    процесс, которому требуется

    улучшение.»

     

    Томас Сталкап, ЧП

    Арканзас

    «Мне очень нравится удобство прохождения викторины онлайн и получения немедленного

    Сертификат

     

     

    Марлен Делани, ЧП

    Иллинойс

    «Обучающие модули CEDengineering — очень удобный способ доступа к информации по

    многие различные технические области снаружи

    по собственной специализации без

    вынужден путешествовать.»

    Гектор Герреро, ЧП

    Грузия

    .

Добавить комментарий

Ваш адрес email не будет опубликован.